
Tru Reputation Token Documentation
Release 0.1.9

Tru Ltd

Nov 25, 2018

Project Documentation

1 Project Contents 3

2 Project Requirements 5
2.1 Token Requirements . 5
2.2 Sale Requirements . 9

3 Project Testing 17
3.1 1. Strategy . 17
3.2 2. Testing Helpers & Harnesses . 17
3.3 3. Unit Tests . 21
3.4 4. Fuzzing Tests . 24
3.5 5. Edge Tests . 26

4 Security and Code Auditing 29
4.1 1. Strategy . 29
4.2 2. Auditing Tools . 29
4.3 3. Public Instances . 30

5 Supporting Scripts 33
5.1 audit.sh . 33
5.2 coverage.sh . 34
5.3 devnet.sh . 34
5.4 flattensrc.sh . 35
5.5 post-commit.sh . 36
5.6 pre-commit.sh . 36
5.7 ./scripts/testnet.sh . 36

6 TruReputationToken 39
6.1 1. Imports & Dependencies . 39
6.2 2. Variables . 39
6.3 3. Enums . 40
6.4 4. Events . 40
6.5 5. Mappings . 41
6.6 6. Modifiers . 41
6.7 7. Functions . 41

7 TruSale 47

i

7.1 1. Imports & Dependencies . 47
7.2 2. Variables . 47
7.3 3. Enums . 48
7.4 4. Events . 48
7.5 5. Mappings . 50
7.6 6. Modifiers . 50
7.7 7. Functions . 51

8 TruPreSale 63
8.1 1. Imports & Dependencies . 63
8.2 2. Variables . 63
8.3 3. Enums . 64
8.4 4. Events . 64
8.5 5. Mappings . 64
8.6 6. Modifiers . 64
8.7 7. Functions . 64

9 TruCrowdSale 69
9.1 1. Imports & Dependencies . 69
9.2 2. Variables . 69
9.3 3. Enums . 70
9.4 4. Events . 70
9.5 5. Mappings . 70
9.6 6. Modifiers . 70
9.7 7. Functions . 70

10 BasicToken 75
10.1 1. Imports & Dependencies . 75
10.2 2. Variables . 75
10.3 3. Enums . 76
10.4 4. Events . 76
10.5 5. Mappings . 76
10.6 6. Modifiers . 76
10.7 7. Functions . 76

11 ERC20 79
11.1 1. Imports & Dependencies . 79
11.2 2. Variables . 79
11.3 3. Enums . 80
11.4 4. Events . 80
11.5 5. Mappings . 80
11.6 6. Modifiers . 80
11.7 7. Functions . 81

12 ERC20Basic 85
12.1 1. Imports & Dependencies . 85
12.2 2. Variables . 85
12.3 3. Enums . 86
12.4 4. Events . 86
12.5 5. Mappings . 86
12.6 6. Modifiers . 86
12.7 7. Functions . 87

13 Haltable 89
13.1 1. Imports & Dependencies . 89

ii

13.2 2. Variables . 89
13.3 3. Enums . 90
13.4 4. Events . 90
13.5 5. Mappings . 90
13.6 6. Modifiers . 90
13.7 7. Functions . 91

14 Ownable 95
14.1 1. Imports & Dependencies . 95
14.2 2. Variables . 95
14.3 3. Enums . 95
14.4 4. Events . 96
14.5 5. Mappings . 96
14.6 6. Modifiers . 96
14.7 7. Functions . 97

15 ReleaseableToken 99
15.1 1. Imports & Dependencies . 99
15.2 2. Variables . 99
15.3 3. Enums . 100
15.4 4. Events . 100
15.5 5. Mappings . 101
15.6 6. Modifiers . 101
15.7 7. Functions . 103

16 SafeMath 109
16.1 1. Imports & Dependencies . 109
16.2 2. Variables . 109
16.3 3. Enums . 109
16.4 4. Events . 110
16.5 5. Mappings . 110
16.6 6. Modifiers . 110
16.7 7. Functions . 110

17 StandardToken 115
17.1 1. Imports & Dependencies . 115
17.2 2. Variables . 115
17.3 3. Enums . 116
17.4 4. Events . 116
17.5 5. Mappings . 116
17.6 6. Modifiers . 116
17.7 7. Functions . 116

18 TruAddress 123
18.1 1. Imports & Dependencies . 123
18.2 2. Variables . 123
18.3 3. Enums . 123
18.4 4. Events . 124
18.5 5. Mappings . 124
18.6 6. Modifiers . 124
18.7 7. Functions . 124

19 TruMintableToken 127
19.1 1. Imports & Dependencies . 127
19.2 2. Variables . 127

iii

19.3 3. Enums . 128
19.4 4. Events . 128
19.5 5. Mappings . 130
19.6 6. Modifiers . 130
19.7 7. Functions . 130

20 TruUpgradeableToken 135
20.1 1. Imports & Dependencies . 135
20.2 2. Variables . 135
20.3 3. Enums . 136
20.4 4. Events . 136
20.5 5. Mappings . 138
20.6 6. Modifiers . 138
20.7 7. Functions . 138

21 UpgradeAgent 145
21.1 1. Imports & Dependencies . 145
21.2 2. Variables . 145
21.3 3. Enums . 145
21.4 4. Events . 146
21.5 5. Mappings . 146
21.6 6. Modifiers . 146
21.7 7. Functions . 146

22 Acknowledgments 149
22.1 Open Zepplin . 149
22.2 TokenMarket . 149

23 Useful Links 151
23.1 Solidity Links . 151

24 Contact Information 153

25 Contribution Guidelines 155

26 Legal Notice 157

iv

Tru Reputation Token Documentation, Release 0.1.9

Last Modified On 4th December 2017
Revision Version 0.1.9

The Tru Reputation Token is part of the Tru Reputation Protocol by Tru Ltd and forms the cornerstone of the crypto-
economic model in the Tru Reputation Protocol as detailed in the Tru Reputation Protocol Whitepaper. This project
and documentation contains all design specifications, source code, security audits and testing suites for the Tru Repu-
tation Token including all Crowd Sale Smart Contracts, and supporting Smart Contracts and Libraries. The contents
of this Project can be used under the Apache 2 License.

Project Documentation 1

https://tru.ltd
https://github.com/TruLtd/tru-reputation-token
https://github.com/TruLtd/tru-reputation-protocol
https://tru.ltd
https://github.com/TruLtd/tru-reputation-protocol
https://tru.ltd/whitepaper
https://github.com/TruLtd/tru-reputation-token
https://github.com/TruLtd/tru-reputation-token
https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE

Tru Reputation Token Documentation, Release 0.1.9

2 Project Documentation

CHAPTER 1

Project Contents

The Tru Reputation Token project has the following directory structure and contents:

3

Tru Reputation Token Documentation, Release 0.1.9

Path Overview Detail Link
./.github/ Templates for GitHub N/A
./audits/ Security Audits for the Project Security and Code Auditing
./audits/mythril

‘mythril‘_ audits for the Project
Security and Code Auditing

./audits/oyente
‘oyente‘_ audits for the Project

Security and Code Auditing

./contracts Project Solidity Smart Contracts Smart Contract Reference

./contracts/
supporting

Supporting Solidity Contracts & Libraries Supporting Smart Contract
Reference

./contracts/
test-helpers

Testing Helper Solidity Contracts 2. Testing Helpers & Har-
nesses

./docs/ Source files for this documentation N/A

./migrations/ truffle migration contract N/A

./scripts/ Supporting Project Scripts Supporting Scripts

./src/ Flat Project Source files Security and Code Auditing

./test/ Testing suite for Project 3. Unit Tests

./test/helpers/ Helpers for Testing Suite 2. Testing Helpers & Har-
nesses

./tru-devnet/ Folder containing configuration for Tru-DevNet
Geth Network

N/A

.babelrc Babel configuration for Project N/A

.gitignore git ignore file for Project N/A

.jshintrc JSHint configuration for Project N/A

.solcover.js solidity-coverage configuration for Project N/A

.solhint.json Solhint configuration for Project N/A

.soliumignore Solium ignore file for Project N/A

.soliumrc.json Solium configuration for Project N/A

.travis.yml Travis CI configuration for Project N/A
LICENSE Apache 2.0 License for Project N/A
package-lock.json Package Lock file for Project N/A
package.json Package file for Project N/A
README.md Readme file for Project N/A
truffle.js Configuration file for truffle N/A

4 Chapter 1. Project Contents

https://github.com
http://truffleframework.com/
https://github.com/sc-forks/solidity-coverage
http://truffleframework.com/

CHAPTER 2

Project Requirements

Author Ian Bray

Revision Date 26/11/2017

The following sections break down the requirements for the Tru Reputation Token and any associated Sale Smart
Contracts, supporting libraries, security or testing requirements

2.1 Token Requirements

2.1.1 Tru Reputation Token Requirements

When designing the Tru Reputation Token the following requirements were specified:

Requirement Requirement Description
TRTREQ 001 Token must be ERC-20 compliant
TRTREQ 002 Token must support up to 10^18 decimal places
TRTREQ 003 Token must be named Tru Reputation Token
TRTREQ 004 Token must use TRU as its symbol
TRTREQ 005 Token must only be minted during Sale events
TRTREQ 006 Token must have an address for the Executive Board
TRTREQ 007 Only the Executive Board should be able to change the Executive Board address
TRTREQ 008 Token must be able to be upgraded in the future
TRTREQ 009 Token upgrades should only occur through consensus
TRTREQ 010 Token upgrades should only be able to be set by Smart Contract owner
TRTREQ 011 Tokens should not be able to be transferred until all Sales are completed
TRTREQ 012 All Smart Contract code must be fully unit tested
TRTREQ 013 All Smart Contract code must be fully fuzz tested
TRTREQ 014 All Smart Contract code must be security audited

5

https://github.com/TruLtd/tru-reputation-token

Tru Reputation Token Documentation, Release 0.1.9

TRTREQ 001

Requirement: Token must be ERC-20 compliant

Description: To maintain optimal compatibility, security, functionality and in line with Best Practice the Tru Repu-
tation Token must be ERC-20 Compliant.

Implementation Notes: Leveraged Zeppelin Solidity to ensure ERC-20 compliance by using a sub-class of the
ERC20 Smart Contract.

Requirement Met? Yes

TRTREQ 002

Requirement: Token must support up to 10^18 decimal places

Description: To ensure future compatibility and in line with having an entirely fixed token supply, the Tru Reputa-
tion Token must support 10^18 decimal places to allow the highest level of granular fractionality for the Token.
This is to ensure the precise reward & cost models of the Tru Reputation Protocol are met.

Implementation Notes: Leveraged Zeppelin Solidity to ensure ERC-20 compliance and set the decimals constant
variable to 18.

Requirement Met? Yes

TRTREQ 003

Requirement: Token must be named Tru Reputation Token

Description: To ensure the appropriate identification of the Tru Reputation Token it must be named as such in the
Smart Contract and be publicly visible.

Implementation Notes: Leveraged Zeppelin Solidity to ensure ERC-20 compliance and set the name constant vari-
able to Tru Reputation Token.

Requirement Met? Yes

TRTREQ 004

Requirement: Token must use TRU as its symbol

Description: To ensure the appropriate identification of the Tru Reputation Token it must be have its token symbol
set to TRU.

Implementation Notes: Leveraged Zeppelin Solidity to ensure ERC-20 compliance and set the symbol constant vari-
able to TRU.

Requirement Met? Yes

TRTREQ 005

Requirement: Token must only be minted during Sale events

Description: To prevent oversupply, the Tru Reputation Token should only be able to be minted during a Crowdsale
event and once complete, no further tokens should be able to be minted.

6 Chapter 2. Project Requirements

https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

Implementation Notes: Leveraged a customised version of the Zeppelin Solidity MintableToken the base token has
the capability to both be minted and to be able to be finalise that minting process fully and finally. In conjunction
with the TruSale Smart Contract and customizations made to the MintableToken to set these finalisation criteria.

Requirement Met? Yes

TRTREQ 006

Requirement: Token must have an address for the Executive Board

Description: As per the Tru Reputation Protocol Whitepaper the Tru Reputation Protocol will be governed, steered
and maintained by an Advisory Board. Motions passed by the Advisory Board will need to be enacted by the
Tru Ltd Executive Board and for that purpose a multi-signature wallet will be created to enact those changes.
The address of this wallet needs to be set upon construction of the Smart Contract.

Implementation Notes: Implemented using the execBoard address variable, the onlyExecBoard modifier, BoardAd-
dressChanged event, and the changeBoardAddress function that can only be executed by the existing Executive
Board address. This implemenetation addresses this requirement and TRTREQ 007.

Requirement Met? Yes

TRTREQ 007

Requirement: Only the Executive Board should be able to change the Executive Board address

Description: In conjunection with TRTREQ 006 only the current Executive Board Address should be able to change
the Executive Board Address to a different value and there should be a full audit trail of any changes made.

Implementation Notes: Implemented along with TRTREQ 006 by the onlyExecBoard modifier, BoardAddress-
Changed event, and the changeBoardAddress function.

Requirement Met? Yes

TRTREQ 008

Requirement: Token must be able to be upgraded in the future

Description: To allow the Tru Reputation Protocol to deliver new functionality and fix any potential issues, the Tru
Reputation Token needs to have a mechanism to allow the Token to be upgraded over time.

Implementation Notes: By leveraging an updated version of the UpgradeableToken (TruUpgradeableToken) and
UpgradeAgent Smart Contracts by Token Market, the Tru Reputation Token can be upgraded in the future.

Requirement Met? Yes

TRTREQ 009

Requirement: Token upgrades should only occur through consensus

Description: In line with the guiding principles of cryptocurrency, contract law & customs, any Token upgrade should
require consensus of Token holders to adopt any upgrade to the Token.

Implementation Notes: By leveraging an updated version of the UpgradeableToken (TruUpgradeableToken) and
UpgradeAgent Smart Contracts by Token Market, the Tru Reputation Token is upgraded by the Token holder
when they can opt in to any potential upgrade.

Requirement Met? Yes

2.1. Token Requirements 7

https://github.com/OpenZeppelin/zeppelin-solidity
https://tru.ltd/whitepaper
https://github.com/TruLtd/tru-reputation-protocol
https://github.com/TokenMarketNet/
https://github.com/TokenMarketNet/

Tru Reputation Token Documentation, Release 0.1.9

TRTREQ 010

Requirement: Token upgrades should only be able to be set by Smart Contract owner

Description: To protect Tru Reputation Token from malicious third-parties, only the owner of the Token Smart
Contract should be able to provide any upgrade to the Smart Contract.

Implementation Notes: By leveraging an updated version of the ReleaseableToken Smart Contract by Token Mar-
ket, the Tru Reputation Token has to be set to a released state explicitly before the Token can be exchanged
or transferred between wallets beyond the initial address that purchased the tokens. By adding this event in the
closing logic of the last Sale event, the capability to transfer Tru Reputation Token can be set at a time after
that event.

Requirement Met? Yes

TRTREQ 011

Requirement: Tokens should not be able to be transferred until all Sales are completed

Description: To prevent Pre-Launch transfer of Tokens the Tru Reputation Token needs to be non-transferable until
any and all Sale events have concluded.

Implementation Notes: By leveraging an updated version of the ReleaseableToken Smart Contract by Token Mar-
ket, the Tru Reputation Token has to be set to a released state explicitly before the Token can be exchanged
or transferred between wallets beyond the initial address that purchased the tokens. By adding this event in the
closing logic of the last Sale event, the capability to transfer Tru Reputation Token can be set at a time after
that event.

Requirement Met? Yes

TRTREQ 012

Requirement: All Smart Contract code must be fully unit tested

Description: All Tru Reputation Token Smart Contract functionality should be testable and verifable through unit
tests.

Implementation Notes: Leveraging Truffle, Mocha Unit Tests have been created for the Tru Reputation Token
Smart Contracts and supporting Smart Contracts. This Tesing Suite will be updated as code changes to ensure
100% coverage of lines, statements, functions & branches in the testing suite.

Requirement Met? Yes and ongoing

TRTREQ 013

Requirement: All Smart Contract code must be fully fuzz tested

Description: In keeping with good security practice, all Tru Reputation Token Smart Contract code must be fully
fuzz tested where fuzzing would be applicable to prevent exploits in the Smart Contract.

Implementation Notes: Leveraging Truffle, and a Fuzzing Library for Javascript additional tests have been been
created for the Tru Reputation Token Smart Contracts and supporting Smart Contracts. These tests stress each
function and check for exploits and failures to ensure the security and robustness of the Smart Contracts. These
tests are within the Mocha Test Suite and will be updated as code changes to ensure 100% coverage of lines,
statements, functions & branches in the testing suite.

Requirement Met? Yes and ongoing

8 Chapter 2. Project Requirements

https://github.com/TokenMarketNet/
https://github.com/TokenMarketNet/
https://github.com/TokenMarketNet/
https://github.com/TokenMarketNet/

Tru Reputation Token Documentation, Release 0.1.9

TRTREQ 014

Requirement: All Smart Contract code must be fully security audited

Description: Leveraging tools such as Oyente, all Tru Reputation Token Smart Contract code must be subjected to
Static Analysis and security audit.

Implementation Notes: Oyente auditing has been implemented for all Tru Reputation Token Smart Contracts.

Requirement Met? Yes and ongoing

2.2 Sale Requirements

2.2.1 Common Sale Requirements

When designing the Pre-Sale and CrowdSale Smart Contracts for the Tru Reputation Token the following common
requirements were specified:

Requirement Requirement Description
SALREQ 001 Each sale must have a maximum cap of Tokens to be sold
SALREQ 002 Each sale should have a Start and End time
SALREQ 003 No purchases should be able to be made before Sale Start
SALREQ 004 No purchases should be able to be made after Sale End
SALREQ 005 Each sale must end if cap is hit
SALREQ 006 Each sale must end if end time has passed
SALREQ 007 Each sale must have a distinct Eth to Tru purchase rate
SALREQ 008 Each sale must track the amount of tokens sold
SALREQ 009 Each sale must track the amount of ETH raised
SALREQ 010 Each sale must track the number of purchasers
SALREQ 011 Each sale must pay all funds raised to a dedicated wallet
SALREQ 012 The end time of a Sale should be able to be changed
SALREQ 013 Each sale must have a AML/KYC Whitelist
SALREQ 014 Each sale must have maximum buy limit for non-WhiteListed accounts
SALREQ 015 Each sale must have a minimum buy limit for all buyers
SALREQ 016 Each sale must be able to be halted in an emergency
SALREQ 017 Each sale must mint tokens at the time of purchase
SALREQ 018 Each sale must mint appropriate amount of tokens for Tru Ltd when a purchase occurs
SALREQ 019 All buy activity on sales must be audited
SALREQ 020 All updates to the Whitelist must be audited
SALREQ 021 Must be able to remove an address from the WhiteList
SALREQ 022 All updates to the Sale End Time must be audited
SALREQ 023 Post Sale rate should be set to 1,000 TRU per ETH
SALREQ 024 No more than 125,000,000 TRU should be minted during the Sales

SALREQ 001

Requirement: Each sale must have a maximum cap of Tokens to be sold

Description: Each sale that occurs for Tru Reputation Tokens must have a maximum cap for that sale. In addition,
there needs to be a global maximum cap for all Sales. If a previous Sale fails to raise to its cap, the remainder
of the cap should carry forward to the next Sale.

2.2. Sale Requirements 9

Tru Reputation Token Documentation, Release 0.1.9

Implementation Notes: Implemented using the cap variable and logic in the Constructor of child Smart Contracts.

Requirement Met? Yes

SALREQ 002

Requirement: Each sale should have a Start and End time

Description: Each sale that occurs for Tru Reputation Tokens must have a fixed Start Time and fixed End Time.

Implementation Notes: Implemented using saleStartTime and saleEndTime variables, the ref:tru-sale-has-ended
constant function, and requiring the saleStartTime and saleEndTime variables in the constructor (TruSale Con-
structor).

Requirement Met? Yes

SALREQ 003

Requirement: No purchases should be able to be made before Sale Start

Description: No one should be able to purchase from a sale before a sale of Tru Reputation Tokens occurs.

Implementation Notes: Implemented using logic in the buy function to check that the Sale has started.

Requirement Met? Yes

SALREQ 004

Requirement: No purchases should be able to be made after Sale End

Description: Once the end time for the sale of Tru Reputation Tokens completes, no one should be able to purchase
any further tokens from the sale.

Implementation Notes: Implemented using logic in the buy function and hasEnded constant function.

Requirement Met? Yes

SALREQ 005

Requirement: Each sale must end if cap is hit

Description: Once the cap for the sale of Tru Reputation Tokens is reached, the sale should be considered completed
and no one should be able to purchase any further tokens from the sale.

Implementation Notes: Implemented using the cap variable, and logic in the hasEnded constant function.

Requirement Met? Yes

SALREQ 006

Requirement: Each sale must end if end time has passed

Description: Once the end time for the sale of Tru Reputation Tokens is reached, the sale should be considered
completed and no one should be able to purchase any further tokens from the sale.

Implementation Notes: Implemented using logic in the hasEnded constant function.

Requirement Met? Yes

10 Chapter 2. Project Requirements

Tru Reputation Token Documentation, Release 0.1.9

SALREQ 007

Requirement: Each sale must have a distinct Eth to Tru purchase rate

Description: Each sale of Tru Reputation Tokens must have its clear purchase rate of Tru per Ether to reflect the
bonus applied for each Sale round. The post sale price should also be publicly visible within the sale Smart
Contract.

Implementation Notes: Implemented using the BASE_RATE, PRESALE_RATE, SALE_RATE, isPreSale and is-
CrowdSale variables, and logic in the buyTokens function.

Requirement Met? Yes

SALREQ 008

Requirement: Each sale must track the amount of tokens sold

Description: Each sale of Tru Reputation Tokens must track the total number of Tru Reputation Tokens sold
during that Sale through a publicly visible variable.

Implementation Notes: Implemented using the tokenAmount mapping and soldTokens variable.

Requirement Met? Yes

SALREQ 009

Requirement: Each sale must track the amount of ETH raised

Description: Each sale of Tru Reputation Tokens must track the total number of ETH raised during that Sale
through a publicly visible variable.

Implementation Notes: Implemented using the purchasedAmount mapping.

Requirement Met? Yes

SALREQ 010

Requirement: Each sale must track the number of purchasers

Description: Each sale of Tru Reputation Tokens must track the total number of purchasers within that Sale. In
addition, each purchaser and the amount purchased needs to be visible through a mapping to validate each
purchase and provide an audit trail.

Implementation Notes: Implemented using the purchaserCount variable.

Requirement Met? Yes

SALREQ 011

Requirement: Each sale must pay all funds raised to a dedicated wallet

Description: Each sale of Tru Reputation Tokens must collect all raised funds in a dedicated wallet separate from
the address that created the Smart Contract.

Implementation Notes: Implemented using the multiSigWallet address variable and requiring this be set on construc-
tion to act as the receiving wallet for all funds raised during the sale.

Requirement Met? Yes

2.2. Sale Requirements 11

Tru Reputation Token Documentation, Release 0.1.9

SALREQ 012

Requirement: The end time of a Sale should be able to be changed

Description: The end time of each sale of Tru Reputation Tokens must be able to be changed in the event of an
emergency by the Smart Contract owner (for example: closing a sale early, or extending the window due to an
issue with the Ethereum network). This should only be able to be performed by the owner of the Sale Smart
Contract.

Implementation Notes: Implemented using the changeEndTime function and leveraging the onlyOwner modifier.

Requirement Met? Yes

SALREQ 013

Requirement: Each sale must have a AML/KYC Whitelist

Description: Each sale of Tru Reputation Tokens must have a Whitelist of addresses connected to individuals
and entities that have been validated off-chain in line with Anti-Money Laundering and Know Your Customer
legislation & practice. Only the owner of the Sale Smart Contract should be able to amend this Whitelist.

Implementation Notes: Implemented using the purchaserWhiteList mapping, the updateWhitelist function and lever-
aging the onlyOwner modifier.

Requirement Met? Yes

SALREQ 014

Requirement: Each sale must have maximum buy limit for non-WhiteListed accounts

Description: Each sale of Tru Reputation Tokens must have a cumulative maximum amount of tokens a given
address can purchase if they are not on the AML/KYC Whitelist. This limit should be set to 20 ETH.

Implementation Notes: Implemented using the MAX_AMOUNT variable and logic in the buyTokens function.

Requirement Met? Yes

SALREQ 015

Requirement: Each sale must have a minimum buy limit for all buyers

Description: Each sale of Tru Reputation Tokens must have a minimum amount of tokens a given address can
purchase to participate in a sale. This minimum limit must be set to 1 ETH.

Implementation Notes: Implemented using the MIN_AMOUNT variable and logic in the buyTokens function.

Requirement Met? Yes

SALREQ 016

Requirement: Each sale must be able to be halted in an emergency

Description: Each sale of Tru Reputation Tokens must have the capability to be halted by the Sale Smart Contract
owner in an emergency event that should stop the Sale. It should also have the capability to be unhalted. This
should only be able to be performed by the owner of the Sale Smart Contract.

Implementation Notes: Leveraged a modified version of the the Haltable by Token Market.

Requirement Met? Yes

12 Chapter 2. Project Requirements

https://github.com/TokenMarketNet/

Tru Reputation Token Documentation, Release 0.1.9

SALREQ 017

Requirement: Each sale must mint tokens at the time of purchase

Description: To prevent oversupply of tokens, each sale of Tru Reputation Tokens must mint tokens only at the
time of purchase. This will remove the need to ‘burn’ tokens, and ensure stability of supply.

Implementation Notes: Implemented a modified version of MintableToken (TruMintableToken) by Zeppelin So-
lidity and implemented logic in the buyTokens function.

Requirement Met? Yes

SALREQ 018

Requirement: Each sale must mint appropriate amount of tokens for Tru Ltd when a purchase occurs

Description: As per SALREQ 018, to prevent oversupply of tokens each sale of Tru Reputation Tokens must mint
an additional token for each token purchased and assign that to Tru Ltd’s wallet to comply with the 50% sale of
token supply as per the Tru Reputation Protocol Whitepaper.

Implementation Notes: Implemented a modified version of MintableToken (TruMintableToken) by Zeppelin So-
lidity and implemented logic in the completion function to mint the same number of tokens bought in a sale to
match the number sold in that Sale rather than mint them at the moment of purchase.

Requirement Met? Yes

SALREQ 019

Requirement: All buy activity on sales must be audited

Description: Each sale of Tru Reputation Tokens must audit and track each time an address buys tokens, and include
the purchaser address, the recipient address, the amount paid and the number of tokens purchased.

Implementation Notes: Implemented using the TokenPurchased event that is fired each time a purchase is successful.
Event includes the address of the purchaser, the destination address (fixed to be the same in this implementation,
but potentially could be different in another), the total amount spent and the total amount of tokens bought.

Requirement Met? Yes

SALREQ 020

Requirement: All updates to the Whitelist must be audited

Description: Each sale of Tru Reputation Tokens must audit and track each time the AML/KYC Whitelist is updated
and include the Whitelisted address and its status on the Whitelist.

Implementation Notes: Implemented using the WhiteListUpdated event that is fired each time a Whitelist entry is
added or updated. The event includes the address and their status on the Whitelist (true for enabled, false for
disabled).

Requirement Met? Yes

SALREQ 021

Requirement: Must be able to remove an address from the WhiteList

Description: Each sale of Tru Reputation Tokens must offer the capability to remove or disable an address currently
on the Whitelist. This should only be able to be performed by the owner of the Sale Smart Contract.

2.2. Sale Requirements 13

https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity
https://tru.ltd/whitepaper
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

Implementation Notes: Implemented via the purchaserWhiteList mapping of a bool variable to an address. When
that variable is set to true they are active and enabled on the Whitelist. When it is sent to false they are disabled
and in effect ‘removed’ from the Whitelist. This status is checked by the validatePurchase function rather than
purely checking they have an entry on the Whitelist.

Requirement Met? Yes

SALREQ 022

Requirement: All updates to the Sale End Time must be audited

Description: Each sale of Tru Reputation Tokens must audit and track each time the End Time for the sale is
changed.

Implementation Notes: Implemented using the EndChanged event that is fired each time the saleEndTime variable
is altered from its initial value. The event includes the both the old and the new end time.

Requirement Met? Yes

SALREQ 023

Requirement: Post Sale rate should be set to 1,000 TRU per ETH

Description: Each sale of Tru Reputation Tokens must have a publicly visible variable showing the Base Exchange
Rate of 1,000 TRU per ETH

Implementation Notes: Implemented using the BASE_RATE variable.

Requirement Met? Yes

SALREQ 024

Requirement: No more than 125,000,000 TRU should be minted during the Sales

Description: The combined total of all Sales should not mint more than 125,000,000 Tru Reputation Tokens. Of
this no more than 62,500,000 TRU should be sold with the remainder being minted for distribution by Tru Ltd
as per the Tru Reputation Protocol Whitepaper.

Implementation Notes: Implemented using the ETH cap and buy rates ensuring that only 62,500,000 Tru Reputa-
tion Tokens can be sold, and that only a further 62,500,000 Tru Reputation Tokens can be minted to the sale
wallet.

Requirement Met? Yes

2.2.2 Pre-Sale Requirements

When designing the Pre-Sale Smart Contract for the Tru Reputation Token the following common requirements were
specified:

Requirement Requirement Description
PSREQ 001 Cap for Pre-Sale must be fixed at 5,000 ETH
PSREQ 002 Sale Rate for Pre-Sale must be 1,250 TRU per ETH

14 Chapter 2. Project Requirements

https://tru.ltd/whitepaper

Tru Reputation Token Documentation, Release 0.1.9

PSREQ 001

Requirement: Cap for Pre-Sale must be fixed at 5,000 ETH

Description: The cap for the Pre-Sale of Tru Reputation Token must have a fixed sale cap of 8,000 ETH

Implementation Notes: Implemented by setting the PRESALE_CAP to 8000 x 10^18, and logic within the vali-
datePurchase function.

Requirement Met? Yes

PSREQ 002

Requirement: Sale Rate for Pre-Sale must be 1,250 TRU per ETH

Description: The buy price for the Pre-Sale of Tru Reputation Token must be 1,250 TRU per ETH. This equals a
25% bonus/20% discount versus the Base Rate.

Implementation Notes: Implemented using logic within the validatePurchase function, and setting a constant vari-
able for the PRESALE_RATE to 1250.

Requirement Met? Yes

2.2.3 CrowdSale Requirements

When designing the CrowdSale Smart Contract for the Tru Reputation Token the following common requirements
were specified:

Requirement Requirement Description
CSREQ 001 Cap for CrowdSale should be cumulative with any unsold Pre-Sale Cap
CSREQ 002 Cap for CrowdSale must be fixed to 50,000 ETH
CSREQ 003 Sale Rate for Pre-Sale should be 1,125 TRU per ETH

CSREQ 001

Requirement: Cap for CrowdSale should be cumulative with any unsold Pre-Sale Cap

Description: The cap for the CrowdSale of Tru Reputation Token must include any unsold tokens from the Pre-Sale
(e.g. if only 4,000 ETH worth of Tru Tokens are sold during the Pre-Sale, this must be added to the CrowdSale
cap).

Implementation Notes: Implemented using logic in the CrowdSale constructor to ensure that the result of the PreSale
is passed into the constructor and the TOTAL_CAP, and then removing the PreSale raised amount from the
TOTAL_CAP.

Requirement Met? Yes

CSREQ 002

Requirement: Cap for CrowdSale must be fixed to 80,000 ETH

Description: The cap for the CrowdSale of Tru Reputation Token must fixed at 80,000 ETH excluding any potential
unsold cap from the Pre-Sale as per CSREQ 001. For example: If the Pre-Sale sells all 8,000 ETH worth of
Tokens, then the CrowdSale will have a cap of 80,000 ETH. However, if the Pre-Sale only sells 7,000 ETH than
the cap for the CrowdSale should be 81,000 ETH.

2.2. Sale Requirements 15

Tru Reputation Token Documentation, Release 0.1.9

Implementation Notes: By setting the TOTAL_CAP to 88000 x 10^18, and logic within the constructor for the
CrowdSale Smart Contract to remove total raised to date from the initial

Requirement Met? Yes

CSREQ 003

Requirement: Sale Rate for CrowdSale should be 1,125 TRU per ETH

Description: The buy price for the CrowdSale of Tru Reputation Token must be 1,125 TRU per ETH. This equals
a 12.5% bonus/11.11. . . % discount versus the Base Rate.

Implementation Notes: Implemented using logic within the validatePurchase function, and setting a constant vari-
able for the SALE_RATE to 1125, this requirement.

Requirement Met? Yes

16 Chapter 2. Project Requirements

CHAPTER 3

Project Testing

The following section covers the testing strategy and implementation for all Smart Contracts in the Tru Reputation
Token project including supporting Libraries & Smart Contracts.

3.1 1. Strategy

The Testing Strategy for the Tru Reputation Token Project is as defined below:

• Due to the inherent financial risk of Cryptocurrency, and the nature of Solidity, all Contract code including any
supporting Smart Contracts must be subjected to full coverage unit tests to cover all lines, statements, branches
and functions.

• All testing is to be conducted on each commit to the Repository.

• Testing will include, as much as practicable, all contrary cases that could cause any failure.

• The Tru Reputation Token Project will not be released without the above items being met.

3.2 2. Testing Helpers & Harnesses

To facilitate full coverage, the following Testing Helpers and Harnesses have been created:

17

Tru Reputation Token Documentation, Release 0.1.9

Name Detail
MockFailUp-
gradeAgent.sol

Test harness of an UpgradeAgent used to test failure paths for upgrades on the TruRep-
utationToken

MockMigrationTar-
get.sol

Test harness of an TruReputationToken to simulate an upgrade of the token

MockSale.sol Test harness of a TruSale to provide full coverage of failure paths
MockSupportToken.sol Test harness for full failure path testing of StandardToken
MockUpgradeableTo-
ken.sol

Test harness of an Upgradeable token for testing of the TruUpgradeableToken Smart
Contract

MockUpgrade-
ableAgent.sol

Test harness of an Upgradeable token for testing of the UpgradeAgent Smart Contract

EVMInvalidAddress.js Javascript helper for catching Invalid Address errors from EVM
EVMRevert.js Javascript helper for catching Revert errors from EVM
EVMThrow.js Javascript helper for catching Throw errors from EVM
expectFuzzFail.js Javascript helper for catching Fuzzing failure errors from EVM
expectNotDeployed.js Javascript helper for catching Not Deployed errors from EVM
expectThrow.js Javascript helper promise for catching Throw errors
increaseTime.js Javascript helper to change current time on TestRPC
isEven.js Javascript helper to detect in a number is odd or even
latestTime.js Javascript helper to get current timestamp of block on TestRPC

3.2.1 MockFailUpgradeAgent.sol

Name: MockFailUpgradeAgent.sol
Type: Solidity Contract
Path: ./contracts/test-helpers/MockFailUpgradeAgent.sol
Detail: Test harness of an UpgradeAgent used to test failure paths for upgrades on the TruReputationToken
Author: Tru Ltd

3.2.2 MockMigrationTarget.sol

Name: MockMigrationTarget.sol
Type: Solidity Contract
Path: ./contracts/test-helpers/MockMigrationTarget.sol
Detail: Test harness of an TruReputationToken to simulate an upgrade of the token
Author: Tru Ltd

3.2.3 MockSale.sol

Name: MockSale.sol
Type: Solidity Contract
Path: ./contracts/test-helpers/MockSale.sol
Detail: Test harness of a TruSale to provide full coverage of failure paths
Author: Tru Ltd

18 Chapter 3. Project Testing

https://tru.ltd
https://tru.ltd
https://tru.ltd

Tru Reputation Token Documentation, Release 0.1.9

3.2.4 MockSupportToken.sol

Name: MockSupportToken.sol
Type: Solidity Contract
Path: ./contracts/test-helpers/MockSupportToken.sol
Detail: Test harness for full failure path testing of StandardToken
Author: Tru Ltd

3.2.5 MockUpgradeableToken.sol

Name: MockUpgradeableToken.sol
Type: Solidity Contract
Path: ./contracts/test-helpers/MockUpgradeableToken.sol
Detail: Test harness of an Upgradeable token for testing of the TruUpgradeableToken Smart Contract
Author: Tru Ltd

3.2.6 MockUpgradeableAgent.sol

Name: MockUpgradeableAgent.sol
Type: Solidity Contract
Path: ./contracts/test-helpers/MockUpgradeableAgent.sol
Detail: Test harness of an Upgradeable token for testing of the UpgradeAgent Smart Contract
Author: Tru Ltd

3.2.7 EVMInvalidAddress.js

Name: EVMInvalidAddress.js
Type: Solidity Contract
Path: ./test/helpers/EVMInvalidAddress.js
Detail: Javascript helper for catching Invalid Address errors from EVM
Author: Tru Ltd

3.2.8 EVMRevert.js

Name: EVMRevert.js
Type: Solidity Contract
Path: ./test/helpers/EVMRevert.js
Detail: Javascript helper for catching Revert errors from EVM
Author: Tru Ltd

3.2. 2. Testing Helpers & Harnesses 19

https://tru.ltd
https://tru.ltd
https://tru.ltd
https://tru.ltd
https://tru.ltd

Tru Reputation Token Documentation, Release 0.1.9

3.2.9 EVMThrow.js

Name: EVMThrow.js
Type: Solidity Contract
Path: ./test/helpers/EVMThrow.js
Detail: Javascript helper for catching Throw errors from EVM
Author: Zeppelin Solidity

3.2.10 expectFuzzFail.js

Name: expectFuzzFail.js
Type: Solidity Contract
Path: ./test/helpers/expectFuzzFail.js
Detail: Javascript helper for catching Fuzzing failure errors from EVM
Author: Tru Ltd

3.2.11 expectNotDeployed.js

Name: expectNotDeployed.js
Type: Solidity Contract
Path: ./test/helpers/expectNotDeployed.js
Detail: Javascript helper for catching Not Deployed errors from EVM
Author: Tru Ltd

3.2.12 expectThrow.js

Name: expectThrow.js
Type: Solidity Contract
Path: ./test/helpers/expectThrow.js
Detail: Javascript helper promise for catching Throw errors
Author: Zeppelin Solidity

3.2.13 increaseTime.js

Name: increaseTime.js
Type: Solidity Contract
Path: ./test/helpers/increaseTime.js
Detail: Javascript helper to change current time on TestRPC
Author: Zeppelin Solidity

20 Chapter 3. Project Testing

https://github.com/OpenZeppelin/zeppelin-solidity
https://tru.ltd
https://tru.ltd
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

3.2.14 isEven.js

Name: isEven.js
Type: Solidity Contract
Path: ./test/helpers/isEven.js
Detail: Javascript helper to detect in a number is odd or even
Author: Tru Ltd

3.2.15 latestTime.js

Name: latestTime.js
Type: Solidity Contract
Path: ./test/helpers/latestTime.js
Detail: Javascript helper to get current timestamp of block on TestRPC
Author: Zeppelin Solidity

3.3 3. Unit Tests

The following Unit Tests are defined for the Tru Reputation Token project:

3.3.1 3.1. TruReputationToken Unit Tests

Name: TruReputationToken Unit Tests
Path: ./test/Unit_Tests_TruReputationToken.js
Detail: Unit Tests covering the TruReputationToken.sol Smart Contract
No of Test Cases: 35

Description
01 TruReputationToken should have correct name, symbol and description
02 Owner should be able to assign Executive Board Address once
03 No other account should be able to change Executive Board Address
04 Should be unable to assign an empty address as Exec Board
05 Should be unable to assign an self as Exec Board
06 Exec Board should be able to assign different Exec Board Account
07 TruReputationToken should have 0 total supply
08 Only TruReputationToken owner can set the Release Agent
09 Only TruReputationToken Owner can set transferAgent
10 mintingFinished should be false after construction
11 Should fail to deploy new Upgrade Token with no tokens
12 Should mint a token with 10^18 decimal places
13 Should mint 100 tokens to a supplied address
14 Should fail to mint after calling finishMinting
15 Token should have correct Upgrade Agent
16 Should deploy new Upgrade Token
17 Should fail to set empty UpgradeMaster

Continued on next page

3.3. 3. Unit Tests 21

https://tru.ltd
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

Table 1 – continued from previous page
18 Should fail to set UpgradeMaster if not already master
19 Should set UpgradeMaster if already master
20 Token should be able to set the upgrade
21 Token should not upgrade without an upgrade agent set
22 Should not set an upgrade agent with empty address
23 Should not set an upgrade agent with a Token that is not allowed to upgrade
24 Should set an upgrade agent that is not an upgrade agent
25 Should set an upgrade agent
26 Only Token owner can set upgrade
27 Token should not upgrade with an empty upgrade amount
28 Token should not upgrade from an account without tokens
29 Token should not upgrade with an amount greater than the supply
30 Should upgrade the token
31 UpgradeAgent should not be changed after the upgrade has started
32 MockMigrationTarget should revert on attempt to transfer to it
33 Functions increaseApproval & decreaseApproval should increase & decrease approved allowance
34 Function transferFrom should fail with invalid values

3.3.2 3.2. TruPreSale Unit Tests

Name: TruPreSale Unit Tests
Path: ./test/Unit_Tests_TruPreSale.js
Detail: Unit Tests covering the TruPreSale.sol Smart Contract
No of Test Cases: 36

Description
01 Cannot deploy TruPreSale with incorrect variables
02 TruPreSale and TruReputationToken are deployed
03 Fallback function should revert
04 Pre-Sale hard variables are as expected
05 Set Release Agent for TruReputationToken
06 Transfer TruReputationToken ownership to Pre-Sale
07 Can Add Purchaser to Purchaser Whitelist
08 Can Remove Purchaser from Purchaser Whitelist
09 Cannot purchase before start of Pre-Sale
10 Cannot purchase below minimum purchase amount
11 Cannot purchase above maximum purchase amount if not on Whitelist
12 Can purchase above maximum purchase amount if on Whitelist
13 Can halt Pre-Sale in an emergency
14 Tokens cannot be transferred before Pre-Sale is finalised
15 Only nominated Release Agent can make Tokens transferable
16 Only Token Owner can mint Tokens
17 Has correct Purchaser count
18 Cannot buy more than cap
19 Pre-Sale owner cannot finalise a Pre-Sale before it ends
20 Cannot buy with invalid address
21 Cannot buy 0 amount
22 Can buy repeatedly from the same address

Continued on next page

22 Chapter 3. Project Testing

Tru Reputation Token Documentation, Release 0.1.9

Table 2 – continued from previous page
23 Can buy up to the cap on the Pre-Sale
24 Cannot buy once the cap is reached on the Pre-Sale
25 Cannot buy once Pre-Sale has ended
26 Pre-Sale owner can finalise the Pre-Sale
27 Cannot finalise a finalised Pre-Sale
28 Minted TruReputationToken cannot be transferred yet
29 Can change Pre-Sale end time to further into the future
30 Cannot change Pre-Sale end time to less than start time
31 Can change Pre-Sale end time to less than current end time
32 Can change Pre-Sale end time to less than current time & end sale
33 Only Pre-Sale Owner can change Pre-Sale end time
34 Cannot create Pre-Sale with end time before start time
35 Cannot create Pre-Sale with invalid Token Address
36 Cannot create Pre-Sale with invalid Sale Wallet Address

3.3.3 3.3. TruCrowdSale Unit Tests

Name: TruCrowdSale Unit Tests
Path: ./test/Unit_Tests_TruCrowdSale.js
Detail: Unit Tests covering the TruCrowdSale.sol Smart Contract
No of Test Cases: 37

Description
01 Cannot deploy TruCrowdSale with incorrect variables
02 TruPreSale and TruReputationToken are deployed
03 Simulate completed PreSale and transition to CrowdSale
04 Fallback function should revert
05 CrowdSale hard variables are as expected
06 Transfer TruReputationToken ownership to CrowdSale
07 Can Add Purchaser to CrowdSale Purchaser Whitelist
08 Can Remove Purchaser from CrowdSale Purchaser Whitelist
09 Cannot purchase before start of CrowdSale
10 Cannot purchase below minimum purchase amount
11 Cannot purchase above maximum purchase amount if not on CrowdSale Whitelist
12 Can purchase above maximum purchase amount if on CrowdSale Whitelist
13 Can halt CrowdSale in an emergency
14 Tokens cannot be transferred before CrowdSale is finalised
15 Only nominated Release Agent can make Tokens transferable
16 Only Token Owner can mint Tokens
17 CrowdSale has correct Purchaser count
18 Cannot buy more than CrowdSale cap
19 CrowdSale owner cannot finalise a CrowdSale before it ends
20 Cannot buy from CrowdSale with invalid address
21 Cannot buy 0 amount from CrowdSale
22 Can buy repeatedly from the same address
23 Can buy up to the cap on the CrowdSale
24 Cannot buy once the cap is reached on the CrowdSale
25 CrowdSale owner can finalise the CrowdSale

Continued on next page

3.3. 3. Unit Tests 23

Tru Reputation Token Documentation, Release 0.1.9

Table 3 – continued from previous page
26 Cannot buy once CrowdSale has ended
27 Cannot finalise a finalised CrowdSale
28 Minted TruReputationToken can be transferred
29 CrowdSale has higher cap if PreSale did not hit cap
30 Can change CrowdSale end time to further into the future
31 Cannot change CrowdSale end time to less than start time
32 Can change CrowdSale end time to less than current end time
33 Can change CrowdSale end time to less than current time & end sale
34 Only Crowdsale Owner can change CrowdSale end time
35 Cannot create Crowdsale with end time before start time
36 Cannot create Crowdsale with invalid Token Address
37 Cannot create Crowdsale with invalid Sale Wallet Address

3.4 4. Fuzzing Tests

To ensure a robust testing strategy to ensure code quality and predictability, using fuzzing testing can expose non-
obvious exploits through testing non-obvious code paths and reactions to large numbers of tests with large amount of
data.

To ensure the security and stability of the Tru Reputation Protocol and the Tru Reputation Token project, Fuzzing
is performed on all Smart Contracts to expose and remedy any potential vulnerabilities or exploits introduced in each
release cycle.

Due to the nature of fuzzing and the defaults of Mocha and some characteristics of the TestRPC network these tests
can take up to an hour to execute.

3.4.1 4.1. TruReputationToken Fuzzing Tests

Name: TruReputationToken Fuzzing Tests
Path: ./test/Fuzzing_Tests_TruReputationToken.js
Detail: Fuzzing Tests covering the TruReputationToken.sol Smart Contract
No of Test Cases: 27

24 Chapter 3. Project Testing

https://mochajs.org/

Tru Reputation Token Documentation, Release 0.1.9

Description
01 Fuzz test of TruReputationToken Constructor with invalid executor address
02 Fuzz test of TruReputationToken changeBoardAddress with invalid arguments
03 Fuzz test of TruMintableToken mint with invalid arguments
04 Fuzz test of TruMintableToken finishMinting with invalid arguments
05 Fuzz test of ReleasableToken setTransferAgent with invalid arguments
06 Fuzz test of ReleasableToken setReleaseAgent with invalid arguments
07 Fuzz test of ReleasableToken releaseTokenTransfer with invalid arguments
08 Fuzz test of ReleasableToken transfer with invalid arguments
09 Fuzz test of ReleasableToken transferFrom with invalid arguments
10 Fuzz test of StandardToken approve with invalid arguments
11 Fuzz test of StandardToken allowance with invalid arguments
12 Fuzz test of StandardToken increaseApproval with invalid arguments
13 Fuzz test of StandardToken decreaseApproval with invalid arguments
14 Fuzz test of transferFrom of StandardToken with invalid arguments
15 Fuzz test of BasicToken balanceOf with invalid arguments
16 Fuzz test of transferOwnership of Ownable with invalid arguments
17 Fuzz test of UpgradeableToken setUpgradeAgent with invalid arguments
18 Fuzz test of UpgradeableToken setUpgradeMaster with invalid arguments
19 Fuzz test of UpgradeableToken upgrade with invalid arguments
20 Fuzz test of UpgradeableToken upgradeFrom with invalid arguments
21 Fuzz test of Ownable transferOwnership with invalid arguments
22 Fuzz test performing a large volume of transfer() transactions of 1 TRU between accounts
23 Fuzz test performing a large volume of transferFrom() transactions of 1 TRU between accounts
24 Fuzz test performing a large volume of transfer() transactions of 300,000,000 TRU between accounts
25 Fuzz test performing a large volume transferFrom() transactions of 300,000,000 TRU between accounts
26 Fuzz test of functions that receive no direct input
27 Fuzz test of structural send & sendTransaction functions

3.4.2 4.2. TruPreSale Fuzzing Tests

Name: TruPreSale Fuzzing Tests
Path: ./test/Fuzzing_Tests_TruPreSale.js
Detail: Fuzzing Tests covering the TruPreSale.sol Smart Contract
No of Test Cases: 13

3.4. 4. Fuzzing Tests 25

Tru Reputation Token Documentation, Release 0.1.9

Description
01 Fuzz test of TruPreSale Constructor with invalid parameters
02 Fuzz test of TruPreSale updateWhiteList with invalid parameters
03 Fuzz test of TruPreSale buy with invalid parameters
04 Fuzz test of TruPreSale finalise with invalid parameters
05 Fuzz test of TruPreSale halt with invalid parameters
06 Fuzz test of TruPreSale hasEnded with invalid parameters
07 Fuzz test of TruPreSale send with invalid parameters
08 Fuzz test of TruPreSale sendTransaction with invalid parameters
09 Fuzz test of TruPreSale transferOwnership with invalid parameters
10 Fuzz test of TruPreSale unhalt with invalid parameters
11 Fuzz test of TruPreSale purchasedAmount with invalid parameters
12 Fuzz test of TruPreSale purchaserWhiteList with invalid parameters
13 Fuzz test of TruPreSale tokenAmount with invalid parameters

3.4.3 4.3. TruCrowdSale Fuzzing Tests

Name: TruCrowdSale Fuzzing Tests
Path: ./test/Fuzzing_Tests_TruCrowdSale.js
Detail: Fuzzing Tests covering the TruCrowdSale.sol Smart Contract
No of Test Cases: 13

Description
01 Fuzz test of TruCrowdSale Constructor with invalid parameters
02 Fuzz test of TruCrowdSale updateWhiteList with invalid parameters
03 Fuzz test of TruCrowdSale buy with invalid parameters
04 Fuzz test of TruCrowdSale finalise with invalid parameters
05 Fuzz test of TruCrowdSale halt with invalid parameters
06 Fuzz test of TruCrowdSale hasEnded with invalid parameters
07 Fuzz test of TruCrowdSale send with invalid parameters
08 Fuzz test of TruCrowdSale sendTransaction with invalid parameters
09 Fuzz test of TruCrowdSale transferOwnership with invalid parameters
10 Fuzz test of TruCrowdSale unhalt with invalid parameters
11 Fuzz test of TruCrowdSale purchasedAmount with invalid parameters
12 Fuzz test of TruCrowdSale purchaserWhiteList with invalid parameters
13 Fuzz test of TruCrowdSale tokenAmount with invalid parameters

3.5 5. Edge Tests

To fully test edge cases, uncommon scenarios, or non conventional paths in code, Edge Tests have been written to
ensure all paths in code are tested fully and for all possible results.

26 Chapter 3. Project Testing

Tru Reputation Token Documentation, Release 0.1.9

3.5.1 5.1 Supporting Edge Tests

Name: Supporting Edge Tests
Path: ./test/Edge_Tests_Supporting.js
Detail: Edges Tests covering edge case & failure testing on Supporting Smart Contracts & Libraries
No of Test Cases: 5

Description
01 Should test all SafeMath functions
02 Should test transferFrom edge case
03 Should test all edge cases for TruSale
04 Should fail to set Migration Agent with
05 Should fail with invalid upgradeMaster Address in constructor

3.5. 5. Edge Tests 27

Tru Reputation Token Documentation, Release 0.1.9

28 Chapter 3. Project Testing

CHAPTER 4

Security and Code Auditing

The following section covers the Security & Code Auditing strategy and implementation for all Smart Contracts in the
Tru Reputation Token project including supporting Libraries & Smart Contracts.

4.1 1. Strategy

The Security & Code Auditing Strategy for the Tru Reputation Token Project is as defined below:

• Due to the inherent financial risk of Cryptocurrency, and the evolving nature of threats and exploits within
Solidity and EVM, standardised automated Security Auditing must be leveraged.

• Automated Security Audits are the be generated on each commit to the Repository.

• Auditing will include, as much as practicable, a scan against known vulnerabilities, exploits, and insecure coding
patterns.

• Manual Security Audits will be performed by an external third party at least every 3 months after Production
Code Release.

• Audits will be reviewed alongside Testing, Fuzz Testing and Code Coverage to ensure Best Practices and code
security before being released to a public network.

• The Tru Reputation Token Project will not be released without the above items being met.

4.2 2. Auditing Tools

Given the evolving nature of Solidity and the EVM, the tools available for performing Security Auditing are not as
fully featured as in other code environments. However, several projects are generally effective when combined with
full Unit Testing and Fuzz Testing as part of a multi- layered Security Strategy including manual code reviews, manual
Audits, Penetration Testing and bug reporting.

The following tools are used within the Tru Reputation Token Project:

29

Tru Reputation Token Documentation, Release 0.1.9

Name Description
Ether-
Scan

EtherScan Verify Contract provides the capability to independently verify that the published source of a
Contract matches the instance, ensuring a match at a bytecode level on the Contract and providing assurance
to users of it.

Cov-
er-
Alls

CoverAlls is used as part of the Project Testing Strategy to ensure Code Coverage of all utilised code and
produces reports detailing the level and degree of code coverage against code execution branches.

Mythril Mythril is security analysis tool for Ethereum Smart Contracts that uses concolic analysis to detect various
types of issues. It can be used to both analyse the code and produce a ‘ethermap’ of the Smart Contract.

Oyente Oyente is a tool for analysing Ethereum Smart Contracts and produces a report detailing whether well-
known exploits can be achieved in the Contract scanned

Mythril and Oyente Audits are automatically performed on each commit to the Repository for each revision of the
code, ensuring a continuous benchmark of Security Validation vs known exploits, and coding patterns that are known
to open vulnerabilities.

Note: All Mythril and Oyente Audits can be viewed on the ./audits/ directory, with separate sub-directories for
each, and separate sub-directories within them for each version Audited.

4.3 3. Public Instances

The following sub-sections list Public Instances of Tru Reputation Token Project Smart Contracts and Libraries,
which version they are, whether they have been validated via EtherScan Verify Contract and a relevant EtherScan link.

4.3.1 3.1. Rinkeby TestNet Instances

The following Contract & Library Instances exist on the Rinkeby Test Network:

Name TruAddress
Source File: /src/0.1.9/TruAddressFull.sol
Type Library
Version 0.1.9
Address 0xe3e9e6493c568a3e66577254a0931e4da95eda45
Source EtherScan Verified? Yes

Name TruReputationToken
Source File: /src/0.1.9/TruReputationTokenFull.sol
Type Smart Contract
Version 0.1.9
Address 0x3cc6363e5c791f804811e883b0af73cfba1b841d
Source EtherScan Verified? Yes

30 Chapter 4. Security and Code Auditing

https://etherscan.io/
https://etherscan.io/
https://etherscan.io/verifyContract
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://github.com/b-mueller/mythril
https://github.com/melonproject/oyente
https://github.com/b-mueller/mythril
https://github.com/melonproject/oyente
https://github.com/b-mueller/mythril
https://github.com/melonproject/oyente
https://etherscan.io/verifyContract
https://etherscan.io/
https://www.rinkeby.io/
https://rinkeby.etherscan.io/address/0xe3e9e6493c568a3e66577254a0931e4da95eda45
https://rinkeby.etherscan.io/address/0xe3e9e6493c568a3e66577254a0931e4da95eda45#code
https://rinkeby.etherscan.io/address/0x3cc6363e5c791f804811e883b0af73cfba1b841d
https://rinkeby.etherscan.io/address/0x3cc6363e5c791f804811e883b0af73cfba1b841d#code

Tru Reputation Token Documentation, Release 0.1.9

Name TruPreSale
Source File: /src/0.1.9/TruPreSaleFull.sol
Type Smart Contract
Version 0.1.9
Address 0x9a921ee90d0404c8f3f2eb974c8b3a415da142d5
Source EtherScan Verified? Yes

Name TruCrowdSale
Source File: /src/0.1.9/TruCrowdSaleFull.sol
Type Smart Contract
Version 0.1.9
Address Not Yet Deployed
Source EtherScan Verified? Not Yet Deployed

4.3.2 3.1. MainNet Instances

The following Contract & Library Instances exist on the Ethereum Ethereum Main Network:

4.3. 3. Public Instances 31

https://rinkeby.etherscan.io/address/0x9a921ee90d0404c8f3f2eb974c8b3a415da142d5
https://rinkeby.etherscan.io/address/0x9a921ee90d0404c8f3f2eb974c8b3a415da142d5#code
https://ethstats.net/

Tru Reputation Token Documentation, Release 0.1.9

32 Chapter 4. Security and Code Auditing

CHAPTER 5

Supporting Scripts

The following scripts are used in the Tru Reputation Token project:

Name Path Description
audit.sh ./scripts/audit.sh Automated Security Auditing script
coverage.sh ./scripts/coverage.sh Automated Code Coverage Testing script
devnet.sh ./scripts/devnet.sh Script for controlling Tru-DevNet Network
flattensrc.sh ./scripts/flattensrc.sh Automated flatten source generation script
post-commit.sh ./scripts/post-commit.sh Script for post-commit hook git activities
pre-commit.sh ./scripts/pre-commit.sh Script for pre-commit hook git activities

‘testnet.sh‘_
./scripts/testnet.sh Script for controlling TestNet TestRPC Network

5.1 audit.sh

Script Path: ./scripts/audit.sh

Script Description:

Script used to automate the generation of mythril and oyente audits that are placed in the ./audits/
directory.

Note: Audits are saved into sub-directories for each version of the project (e.g. ./audits/oyente/0.18/)
and the latest version is copied into the current directory (e.g. ./audits/oyente/current/). These audits are
performed against the flattened source for the TruReputationToken, TruPreSale and TruCrowdSale Smart Contracts,
and the TruAddress Library.

Script Parameters:

33

https://github.com/b-mueller/mythril
https://github.com/melonproject/oyente

Tru Reputation Token Documentation, Release 0.1.9

Parame-
ter

Detail Usage Example

oyente Used to generate oyente Audits into ./audits/oyente/ ./scripts/audit.sh
oyente

mythril Used to generate mythril Audits into ./audits/
mythril/

./scripts/audit.sh
mythril

all Used to generate both mythril and oyente Audits into ./
audits

./scripts/audit.sh all

Note: ./scripts/audit.sh all is executed before each commit to the repository ensuring Security Audits
for both mythril and oyente are generated for each version of the project.

Note: ./scripts/audit.sh all is bound to the npm run audit script shortcut.

5.2 coverage.sh

Script Path: ./scripts/coverage.sh

Script Description:

Script used to automate execution of solidity-coverage coverage testing of the Tru Reputation Token
project. Results are placed in the ./coverage directory as Istanbul HTML and are consumed by Cov-
eralls

Script Parameters:

Parameter Detail Usage Example
start Used start the Coverage TestRPC Network ./scripts/coverage.sh start
stop Used stop the Coverage TestRPC Network ./scripts/coverage.sh stop
generate Used perform generate Code Coverage Reporting ./scripts/coverage.sh generate

Note: The coverage.sh script is automatically executed by Travis CI upon each commit to the Tru Reputation Token
repository.

Note: ./scripts/coverage.sh generate is bound to the npm run coverage script shortcut.

5.3 devnet.sh

Script Path: ./scripts/coverage.sh

Script Description:

Script used to setup, maintain and start the Tru DevNet private Geth Ethereum Network.

34 Chapter 5. Supporting Scripts

https://github.com/melonproject/oyente
https://github.com/b-mueller/mythril
https://github.com/b-mueller/mythril
https://github.com/melonproject/oyente
https://github.com/b-mueller/mythril
https://github.com/melonproject/oyente
https://github.com/sc-forks/solidity-coverage
https://github.com/gotwarlost/istanbul
https://coveralls.io/
https://coveralls.io/

Tru Reputation Token Documentation, Release 0.1.9

Script Parameters:

Param-
eter

Detail Usage Example

start Used start the Coverage Tru DevNet Private Geth Network ./scripts/devnet.sh
start

stop Used stop the Coverage Tru DevNet Private Geth Network ./scripts/devnet.sh
stop

add Used add a new address to the Tru DevNet Private Geth Network ./scripts/devnet.sh
add

limit Used to lower the CPU priority of the Geth instance running the Tru
DevNet Network

./scripts/devnet.sh
limit

restore Used to restore the CPU priority of the Geth instance running the
Tru DevNet Network

./scripts/devnet.sh
restore

test Used to execute all tests in test against the Tru DevNet Network ./scripts/devnet.sh
test

migrate Used to execute truffle migrate against the Tru DevNet Net-
work

./scripts/devnet.sh
migrate

console Used to execute truffle console against the Tru DevNet Net-
work

./scripts/devnet.sh
console

5.4 flattensrc.sh

Script Path: ./scripts/flattensrc.sh

Script Description:

Script used to generate consolidated, flat Solidity source code for the TruReputationToken, TruPreSale
and TruCrowdSale Smart Contracts, and the TruAddress Library that includes all dependencies into single
files for each.

Script Parameters:

Parame-
ter

Detail Usage Example

flatten Used to flatten all defined Smart Contracts and Libraries ./scripts/flattensrc.sh
flatten

token Used to flatten the TruReputationToken.sol
Smart Contract

./scripts/flattensrc.sh
token

presale Used to flatten the TruPreSale.sol Smart Contract ./scripts/flattensrc.sh
presale

crowd-
sale

Used to flatten the TruCrowdSale.sol Smart Con-
tract

./scripts/flattensrc.sh
crowdsale

address Used to flatten the TruAddress.sol Library ./scripts/flattensrc.sh
address

Note: Flattened source files are saved into sub-directories for each version of the project (e.g. ./src/0.1.8/
TruAddressFull.sol), and the latest version is copied into the current directory (e.g. ./src/current/
TruAddressFull.sol).

5.4. flattensrc.sh 35

Tru Reputation Token Documentation, Release 0.1.9

5.5 post-commit.sh

Script Path: ./scripts/post-commit.sh

Script Description:

Script executed in the post-commit trigger in git by leveraging post-commit in the package.json. Used
primarily to ensure that each version has a tag in the repository.

Script Parameters:

No Parameters

5.6 pre-commit.sh

Script Path: ./scripts/pre-commit.sh

Script Description:

Script executed in the pre-commit trigger in git by leveraging pre-commit in the package.json. Used
to ensure that patch version is incremented with each commit, documentation version is up to date and
executes ./scripts/audit.sh all

Script Parameters:

No Parameters

5.7 ./scripts/testnet.sh

Script Path: ./scripts/testnet.sh

Script Description:

Script used to setup, maintain and start the TestNet TestRPC Ethereum Network.

Script Parameters:

36 Chapter 5. Supporting Scripts

Tru Reputation Token Documentation, Release 0.1.9

Parame-
ter

Detail Usage Example

start Starts the TestNet TestRPC Network ./scripts/testnet.sh
start

stop Stop the TestNet TestRPC Network ./scripts/testnet.sh
stop

restart Restarts the TestNet TestRPC Network ./scripts/testnet.sh
restart

status Shows the running status of the TestNet TestRPC Network ./scripts/testnet.sh
status

test Runs full Mocha test suite against the TestNet TestRPC Net-
work

./scripts/testnet.sh
test

fuzz Runs full Mocha test suite against the TestNet TestRPC Net-
work 250 times

./scripts/testnet.sh
fuzz

migrate executes truffle migrate against the TestNet TestRPC
Network

./scripts/testnet.sh
migrate

console executes truffle console against the TestNet TestRPC
Network

./scripts/testnet.sh
console

quicktest Runs full Mocha test suite against the TestNet TestRPC Net-
work twice

./scripts/testnet.sh
quicktest

5.7. ./scripts/testnet.sh 37

Tru Reputation Token Documentation, Release 0.1.9

38 Chapter 5. Supporting Scripts

CHAPTER 6

TruReputationToken

Title: TruReputationToken
Description: Smart Contract for the Tru Reputation Token
Author: Ian Bray, Tru Ltd
Solidity Version: 0.4.18
Relative Path: ./contracts/TruReputationToken.sol
License: Apache 2 License
Current Version: 0.1.9

6.1 1. Imports & Dependencies

The following imports and dependencies exist for the TruReputationToken Smart Contract:

Name Description
SafeMath Zeppelin Solidity Library to perform mathematics safely inside Solidity
TruAddress Library of helper functions surrounding the Solidity Address type
TruMintableToken Smart Contract derived from MintableToken by Zeppelin Solidity with additional func-

tionality.
TruUpgradeableTo-
ken

Smart Contract derived from UpgradeableToken by Token Market with additional func-
tionality.

6.2 2. Variables

The following variables exist for the TruReputationToken Smart Contract:

39

https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/TokenMarketNet/ico/

Tru Reputation Token Documentation, Release 0.1.9

Variable Type Vis Details
decimals uint8 public Constant variable for number of decimals token supports

Default: 18
name string public Constant variable for public name of the token

Default Tru Reputation Token
symbol string public Constant variable for public symbol of the token

Default: TRU
execBoard address public Variable containing address of the Tru Ltd Executive Board

Default: 0x0

6.3 3. Enums

There are no enums for the TruReputationToken Smart Contract.

6.4 4. Events

The following events exist for the TruReputationToken Solidity Library:

Name Description
BoardAddressChanged Event to notify when the execBoard address changes

6.4.1 BoardAddressChanged

Event Name: BoardAddressChanged
Description: Event to notify when the execBoard address changes

Usage

The BoardAddressChanged event has the following usage syntax and arguments:

Argu-
ment

Type In-
dexed?

Details

1 oldAd-
dress

ad-
dress

Yes Source wallet that the older tokens are sent from

2 newAd-
dress

ad-
dress

Yes Address of the destination for upgraded tokens which is hardcoded to the up-
gradeAgent who sends them back to the originating address

3 execu-
tor

ad-
dress

Yes Address that executed the BoardAddressChanged event

Listing 1: BoardAddressChanged Usage Example

BoardAddressChanged(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x123456789abcdefghijklmnopqrstuvwxyz01234);

40 Chapter 6. TruReputationToken

Tru Reputation Token Documentation, Release 0.1.9

6.5 5. Mappings

There are no mappings for the TruReputationToken Smart Contract.

6.6 6. Modifiers

The following modifiers exist for the TruReputationToken Smart Contract:

Name Description
onlyExecBoard Modifier to check the Tru Advisory Board is executing this call

6.6.1 onlyExecBoard

Modifier Name: onlyExecBoard
Description: Modifier to check the Tru Advisory Board is executing this call

Code

The code for the onlyExecBoard modifier is as follows:

Listing 2: onlyExecBoard Code

modifier onlyExecBoard() {
require(msg.sender == execBoard);
_;

}

The onlyExecBoard function performs the following:

• Checks that the msg.sender matches the execBoard variable

6.7 7. Functions

The following functions exist for the TruReputationToken Smart Contract:

Name Description
TruReputationToken Constructor Constructor for the TruReputationToken Smart Contract
changeBoardAddress Function to change the execBoard variable
canUpgrade Override of canUpgrade function
setUpgradeMaster Override of setUpgradeMaster function

6.5. 5. Mappings 41

Tru Reputation Token Documentation, Release 0.1.9

6.7.1 TruReputationToken Constructor

Function Name: TruReputationToken
Description: Constructor for the TruReputationToken Smart Contract
Function Type: Constructor
Function Visibility: Public
Function Modifiers: N/A
Return Type: None
Return Details: N/A

Code

The code for the TruReputationToken Constructor function is as follows:

Listing 3: TruReputationToken Constructor Code

function TruReputationToken() public TruUpgradeableToken(msg.sender) {
execBoard = msg.sender;
BoardAddressChanged(0x0, msg.sender);

}

The TruReputationToken Constructor function performs the following:

• Executes the TruUpgradeableToken constructor as part of its construction.

• Sets the initial execBoard variable to msg.sender

• Fires the BoardAddressChanged event

Usage

The TruReputationToken Constructor function has the following usage syntax and arguments:

Argument Type Details
1 _upgradeMaster address Address to be set as the Upgrade Master

Listing 4: TruReputationToken Constructor Usage Example

TruReputationToken(0x123456789abcdefghijklmnopqrstuvwxyz98765);

6.7.2 changeBoardAddress

Function Name: changeBoardAddress
Description: Function to change the execBoard variable
Function Type: N/A
Function Visibility: Public
Function Modifiers: onlyExecBoard
Return Type: None
Return Details: N/A

42 Chapter 6. TruReputationToken

Tru Reputation Token Documentation, Release 0.1.9

Code

The code for the changeBoardAddress function is as follows:

Listing 5: changeBoardAddress Code

function changeBoardAddress(address _newAddress) public onlyExecBoard {
require(TruAddress.isValid(_newAddress) == true);
require(_newAddress != execBoard);
address oldAddress = execBoard;
execBoard = _newAddress;
BoardAddressChanged(oldAddress, _newAddress);

}

The changeBoardAddress function performs the following:

• Checks the _newAddress argument is a valid Ethereum Address. If not, it will throw

• Checks the _newAddress argument is not the same as the current execBoard variable. If it is, it will throw;

• Sets the execBoard variable to the _newAddress argument.

• Fires the BoardAddressChanged event

Usage

The changeBoardAddress function has the following usage syntax and arguments:

Argument Type Details
1 _newAddress address Address to be set as the new Tru Advisory Board Address

Listing 6: changeBoardAddress Usage Example

changeBoardAddress(0x123456789abcdefghijklmnopqrstuvwxyz98765);

6.7.3 canUpgrade

Function Name: canUpgrade
Description: Override of canUpgrade function
Function Type: Constant
Function Visibility: Public
Function Modifiers: None
Return Type: bool
Return Details: Returns true if the token is in an upgradeable state

Code

The code for the canUpgrade override function is as follows:

6.7. 7. Functions 43

Tru Reputation Token Documentation, Release 0.1.9

Listing 7: canUpgrade Code

function canUpgrade() public constant returns(bool) {
return released && super.canUpgrade();

}

The canUpgrade function performs the following:

• If the released variable and super.canUpgrade() are true, returns true; otherwise returns false

Usage

The canUpgrade function has the following usage syntax:

Listing 8: canUpgrade Usage Example

canUpgrade();

6.7.4 setUpgradeMaster

Function Name: setUpgradeMaster
Description: Override of setUpgradeMaster function
Function Type: N/A
Function Visibility: Public
Function Modifiers: onlyOwner
Return Type: bool
Return Details: Returns true if the token is in an upgradeable state

Code

The code for the setUpgradeMaster override function is as follows:

Listing 9: setUpgradeMaster Code

function setUpgradeMaster(address master) public onlyOwner {
super.setUpgradeMaster(master);

}

The setUpgradeMaster function performs the following:

• Executes the setUpgradeMaster function with the onlyOwner modifier.

Usage

The setUpgradeMaster function has the following usage syntax and arguments:

Argument Type Details
1 _master address Address to be set as the new Upgrade Master Contract

44 Chapter 6. TruReputationToken

Tru Reputation Token Documentation, Release 0.1.9

Listing 10: setUpgradeMaster Usage Example

setUpgradeMaster(0x123456789abcdefghijklmnopqrstuvwxyz98765);

6.7. 7. Functions 45

Tru Reputation Token Documentation, Release 0.1.9

46 Chapter 6. TruReputationToken

CHAPTER 7

TruSale

The TruSale Smart Contract acts a parent class for the TruPreSale and TruCrowdSale contracts and contains all logic
common to both.

Title: TruSale
Description: Parent Smart Contract for all TruReputationToken Token Sales
Author: Ian Bray, Tru Ltd
Solidity Version: ^0.4.18
Relative Path: ./contracts/TruSale.sol
License: Apache 2 License
Current Version: 0.1.9

7.1 1. Imports & Dependencies

The following imports and dependencies exist for the TruSale Smart Contract:

Name Description
Haltable Modified Token Market Smart Contract that provides a capability to halt a contract.
Ownable Zeppelin Solidity Smart Contract that provides ownership capabilities to a contract.
SafeMath Zeppelin Solidity Library to perform mathematics safely inside Solidity
TruAddress Library of helper functions surrounding the Solidity Address type
TruReputationToken Smart Contract for the Tru Reputation Token

7.2 2. Variables

The following variables exist for the TruSale Smart Contract:

47

https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE
https://github.com/TokenMarketNet/ico/
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

Variable Type Vis Details
truToken TruReputation-

Token
pub-
lic

Variable for the token being sold in Sale

saleStartTime uint256 pub-
lic

Start timestamp of the Sale

saleEndTime uint256 pub-
lic

End timestamp of the Sale

purchaser-
Count

uint pub-
lic

Number of sale purchasers so far
Default: 0

multiSigWallet address pub-
lic

Sale wallet address

BASE_RATE uint256 pub-
lic

Constant variable of post sale TRU to ETH rate
Default: 1000

PRE-
SALE_RATE

uint256 pub-
lic

Constant variable of Pre-Sale TRU to ETH rate
Default: 1250 - 25% Bonus

SALE_RATE uint256 pub-
lic

Constant variable of CrowdSale TRU to ETH rate
Default: 1125 - 12.5% Bonus

MIN_AMOUNT uint256 pub-
lic

Minimum Amount of ETH for an address to participate in Sale
Default: 1 * 10^18

MAX_AMOUNTuint256 pub-
lic

Maximum ETH buy Amount for a non-Whitelist address
Default: 20 * 10^18

weiRaised uint256 pub-
lic

Amount raised during Sale in Wei

cap uint256 pub-
lic

Cap of the Sale- value set during construction

isCompleted bool pub-
lic

Whether the Sale is complete

isPreSale bool pub-
lic

Whether the Sale is a Pre-Sale

isCrowdSale bool pub-
lic

Whether the Sale is a CrowdSale

soldTokens uint256 pub-
lic

Amount of TRU during Sale

7.3 3. Enums

There are no enums for the TruSale Smart Contract.

7.4 4. Events

The following events exist for the TruSale Smart Contract:

Name Description
TokenPurchased Event to notify when a token purchase occurs
WhiteListUpdated Event to notify when the purchaseWhiteList is updated
EndChanged Event to notify when the saleEndTime changes
Completed Event to notify when the Sale completes

48 Chapter 7. TruSale

Tru Reputation Token Documentation, Release 0.1.9

7.4.1 TokenPurchased

Event Name: TokenPurchased
Description: EEvent to notify when a token purchase occurs

Usage

The TokenPurchased event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 purchaser address Yes Address being updated on the Whitelist
2 recipient address No Status of the address on the Whitelist
3 weiValue uint256 No Amount of ETH spent (in Wei)
4 tokenAmount uint256 No Amount of tokens purchased (in smallest decimal)

Listing 1: TokenPurchased Usage Example

TokenPurchased(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x123456789abcdefghijklmnopqrstuvwxyz98765,
1000000000000000000,
1250000000000000000000);

7.4.2 WhiteListUpdated

Event Name: WhiteListUpdated
Description: Event to notify when the purchaseWhiteList is updated

Usage

The WhiteListUpdated event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 purchaserAddress address Yes Address being updated on the Whitelist
2 whitelistStatus address No Status of the address on the Whitelist
3 executor address Yes Address that executed the WhiteListUpdated event

Listing 2: WhiteListUpdated Usage Example

WhiteListUpdated(0x123456789abcdefghijklmnopqrstuvwxyz98765,
true,
0x12acd9ef9abcdefghijklmnopqrstuvwxyzghy74);

7.4.3 EndChanged

Event Name: EndChanged
Description: Event to notify when the purchaseWhiteList is updated

7.4. 4. Events 49

Tru Reputation Token Documentation, Release 0.1.9

Usage

The EndChanged event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 oldEnd uint256 No Previous saleEndTime timestamp
2 newEnd uint256 No Updated saleEndTime timestamp
3 executor address Yes Address that executed the EndChanged event

Listing 3: EndChanged Usage Example

EndChanged(1511930475,
1512016874,
0x123456789abcdefghijklmnopqrstuvwxyz98765);

7.4.4 Completed

Event Name: Completed
Description: Event to notify when the Sale completes

Usage

The Completed event has the following usage syntax:

Argument Type Indexed? Details
1 executor address Yes Address that executed the Completed event

Listing 4: Completed Usage Example

Completed(0x123456789abcdefghijklmnopqrstuvwxyz98765);

7.5 5. Mappings

The following mappings exist for the TruSale Smart Contract:

Name Mapping Type Description
purchasedAmount address => uint256 Mapping of purchased amount in ETH to buying address
tokenAmount address => uint256 Mapping of purchased amount of TRU to buying address
purchaserWhiteList address => bool Mapping of Whitelisted address to their Whitelist status

7.6 6. Modifiers

The following modifiers exist for the TruSale Smart Contract:

50 Chapter 7. TruSale

Tru Reputation Token Documentation, Release 0.1.9

Name Description
onlyTokenOwner Modifier to check if transaction sender is the owner of the Token contract

7.6.1 onlyTokenOwner

Modifier Name: onlyTokenOwner
Description: Modifier to check if transaction sender is the owner of the Token contract

Code

The code for the onlyTokenOwner modifier is as follows:

Listing 5: onlyTokenOwner Code

modifier onlyTokenOwner(address _tokenOwner) {
require(msg.sender == _tokenOwner);
_;

}

The onlyTokenOwner function performs the following:

• Checks that the msg.sender matches the supplied _tokenOwner variable. If not, it will throw.

7.7 7. Functions

The following functions exist for the TruSale Smart Contract:

Name Description
TruSale Constructor Constructor for the TruSale Smart Contract
buy Function for buying tokens from the Sale
updateWhitelist Function to add or disable a purchaser from AML Whitelist
changeEndTime Function to change the end time of the Sale
hasEnded Function to check whether the Sale has ended
checkSaleValid Internal function to validate that the Sale is valid
validatePurchase Internal function to validate the purchase of TRU Tokens
forwardFunds Internal function to forward all raised funds to the Sale Wallet
createSale Internal function used to encapsulate more complex constructor logic
buyTokens Private function execute purchase of TRU Tokens

7.7. 7. Functions 51

Tru Reputation Token Documentation, Release 0.1.9

7.7.1 TruSale Constructor

Function Name: TruSale
Description: Constructor for the TruSale Smart Contract
Function Type: Constructor
Function Visibility: Public
Function Modifiers: N/A
Return Type: None
Return Details: N/A

Code

The code for the TruSale Constructor function is as follows:

Listing 6: TruSale Constructor Code

function TruSale(uint256 _startTime,
uint256 _endTime,
address _token,
address _saleWallet) public {

require(TruAddress.isValid(_token) == true);

TruReputationToken tToken = TruReputationToken(_token);
address tokenOwner = tToken.owner();

createSale(_startTime, _endTime, _token, _saleWallet, tokenOwner);
}

The TruSale Constructor function performs the following:

• Checks the _token argument is a valid Ethereum address.

• Gets the owner of the _token TruReputationToken object

• Executes the createSale function with the tokenOwner variable as an argument.

Usage

The TruSale Constructor function has the following usage syntax and arguments:

Argument Type Details
1 _startTime uint256 Sale start timestamp
2 _endTime uint256 Sale end timestamp
3 _token address Address of TruReputationToken Contract
4 _saleWallet address Address of sale wallet

Listing 7: TruSale Constructor Usage Example

TruSale(1511930475,
1512016874,
0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x987654321abcdefghijklmnopqrstuvwxyz12345);

52 Chapter 7. TruSale

Tru Reputation Token Documentation, Release 0.1.9

7.7.2 buy

Function Name: buy
Description: Function for buying tokens from the Sale
Function Type: N/A
Function Visibility: Public payable
Function Modifiers: stopInEmergency
Return Type: N/A
Return Details: N/A

Code

The code for the buy function is as follows:

Listing 8: buy Code

function buy() public payable stopInEmergency {
// Check that the Sale is still open and the Cap has not been reached
require(checkSaleValid());

validatePurchase(msg.sender);
}

Note: the buy function is a Solidity payable functino- as such, ETH is sent to the function to allow the purchase
of tokens during a sale. This function can be halted via the stop-in-emergency modifier as part of the Haltable
characteristics of this Contract.

The buy function performs the following:

• The modifier stopInEmergency checks that the Sale has not been halted. If it has, it will throw.

• Checks the checkSaleValid function returns true. If not, it will throw.

• executes the validatePurchase function.

Usage

The buy function has the following usage syntax:

7.7. 7. Functions 53

Tru Reputation Token Documentation, Release 0.1.9

Listing 9: buy Usage Example

buy({value: 1000000000000000000});

7.7.3 updateWhitelist

Function Name: updateWhitelist
Description: Function to add or disable a purchaser from AML Whitelist
Function Type: N/A
Function Visibility: Public
Function Modifiers: onlyOwner
Return Type: None
Return Details: N/A

Code

The code for the updateWhitelist function is as follows:

Listing 10: updateWhitelist Code

function updateWhitelist(address _purchaser, uint _status) public onlyOwner {
require(TruAddress.isValid(_purchaser) == true);
bool boolStatus = false;
if (_status == 0) {

boolStatus = false;
} else if (_status == 1) {

boolStatus = true;
} else {

revert();
}

WhiteListUpdated(_purchaser, boolStatus);
purchaserWhiteList[_purchaser] = boolStatus;

}

Note: The updateWhitelist function uses uint for the status argument because fuzz testing found that bool arguments
on public functions in Solidity could be interpreted as true when supplied with a random string.

In the interest of type safety and defensive development this was set to uint with 0 being false and 1 being true, all
other values are ignored.

Be very careful using bool on public functions in Solidity.

The updateWhitelist function performs the following:

• Validates the _purchaser argument is a valid Ethereum address.

• Checks the _status argument is either 0 or 1. If 0, sets boolStatus to false, if 1, sets boolStatus to true. If else, it
will throw.

• Fires the WhiteListUpdated event

• Sets the _purchaser to the boolStatus on the purchaseWhiteList

54 Chapter 7. TruSale

Tru Reputation Token Documentation, Release 0.1.9

Usage

The updateWhitelist function has the following usage syntax and arguments:

Argument Type | Details
1 _purchaser uint256 | Address of the purchaser to add or update on the Whitelist
2 _status uint | Status on the Whitelist- 0 for disabled, 1 for enabled

Listing 11: updateWhitelist Usage Example

updateWhitelist(0x987654321abcdefghijklmnopqrstuvwxyz12345, 1);

7.7.4 changeEndTime

Function Name: changeEndTime
Description: Function to change the end time of the Sale
Function Type: N/A
Function Visibility: Public
Function Modifiers: onlyOwner
Return Type: None
Return Details: N/A

Code

The code for the changeEndTime function is as follows:

Listing 12: changeEndTime Code

function changeEndTime(uint256 _endTime) public onlyOwner {

// _endTime must be greater than or equal to saleStartTime
require(_endTime >= saleStartTime);

// Fire Event for time Change
EndChanged(saleEndTime, _endTime);

// Change the Sale End Time
saleEndTime = _endTime;

}

Note: The changeEndTime function has been included to allow a Sale’s end time to be altered after the start. This is
addressed in SALREQ 012 and behaves in the following way:

1. If the End Time is moved before the current block timestamp, it will automatically close the Sale fully and finally.

2. If the End Time is moved beyond the current end time, it will extend the time remaining in the Sale. This is useful
if issues with the network are encountered and should only be used will full communication to purchasers prior to the
change.

The changeEndTime function performs the following:

7.7. 7. Functions 55

Tru Reputation Token Documentation, Release 0.1.9

• Checks the _endTime argument is equal to or greater than the saleStartTime variable. If not, it will throw.

• Fire the EndChanged event.

• Set the saleEndTime variable to the _endTime argument.

Usage

The changeEndTime function has the following usage syntax and arguments:

Argument Type | Details
1 _endTime uint256 | New end timestamp for Sale

Listing 13: changeEndTime Usage Example

changeEndTime(1511930475);

7.7.5 hasEnded

Function Name: hasEnded
Description: Function to check whether the Sale has ended
Function Type: Constant
Function Visibility: Public
Function Modifiers: N/A
Return Type: bool
Return Details: Returns true if the Sale has ended; false if it has not

Code

The code for the hasEnded function is as follows:

Listing 14: hasEnded Code

function hasEnded() public constant returns (bool) {
bool isCapHit = weiRaised >= cap;
bool isExpired = now > saleEndTime;
return isExpired || isCapHit;

}

The hasEnded function performs the following:

• Checks that the weiRaised variable is less than the cap variable.

• Checks that the current block timestamp is less than the saleEndTime timestamp

• If either of the previous checks are true, the Sale has ended. Otherwise the Sale has not ended.

Usage

The hasEnded function has the following usage syntax:

56 Chapter 7. TruSale

Tru Reputation Token Documentation, Release 0.1.9

Listing 15: hasEnded Usage Example

hasEnded();

7.7.6 checkSaleValid

Function Name: checkSaleValid
Description: Internal function to validate that the Sale is valid
Function Type: Constant
Function Visibility: Internal
Function Modifiers: N/A
Return Type: bool
Return Details: Returns true if the Sale is still open; false if it is not

Code

The code for the checkSaleValid function is as follows:

Listing 16: checkSaleValid Code

function checkSaleValid() internal constant returns (bool) {
bool afterStart = now >= saleStartTime;
bool beforeEnd = now <= saleEndTime;
bool capNotHit = weiRaised.add(msg.value) <= cap;
return afterStart && beforeEnd && capNotHit;

}

The checkSaleValid function performs the following:

• Checks the Sale has started. If it has not, will return false.

• Checks the Sale has not ended. If it has, will return false.

• Checks the cap has not been hit, if it has, will return false.

Usage

The checkSaleValid function has the following usage syntax:

7.7. 7. Functions 57

Tru Reputation Token Documentation, Release 0.1.9

Listing 17: checkSaleValid Usage Example

checkSaleValid();

7.7.7 validatePurchase

Function Name: validatePurchase
Description: Internal function to validate the purchase of TRU Tokens
Function Type: N/A
Function Visibility: Internal
Function Modifiers: stopInEmergency
Return Type: N/A
Return Details: N/A

Code

The code for the validatePurchase function is as follows:

function validatePurchase(address _purchaser) internal stopInEmergency {

// _purchaser must be valid
require(TruAddress.isValid(_purchaser) == true);

// Value must be greater than 0
require(msg.value > 0);

buyTokens(_purchaser);
}

Note: The validatePurchase function acts as the both a pre-validation step for a purchase, and a point at which the
Sale can be halted as per the Haltable Smart Contract.

The validatePurchase function performs the following:

• Validates that the _purchaser argument is a valid Ethereum Address.

• Validates that the msg.value is greater than 0

• Executes the buyTokens function.

Usage

The validatePurchase function has the following usage syntax:

Listing 18: validatePurchase Usage Example

validatePurchase(0x987654321abcdefghijklmnopqrstuvwxyz12345);

58 Chapter 7. TruSale

Tru Reputation Token Documentation, Release 0.1.9

7.7.8 forwardFunds

Function Name: forwardFunds
Description: Internal function to forward all raised funds to the Sale Wallet
Function Type: N/A
Function Visibility: Internal
Function Modifiers: N/A
Return Type: N/A
Return Details: N/A

Code

The code for the forwardFunds function is as follows:

function forwardFunds() internal {
multiSigWallet.transfer(msg.value);

}

The forwardFunds function performs the following:

• Transfers any new funds away from the TruSale Smart Contract, to the Sale Wallet reflected in the multiSigWallet
variable.

Usage

The forwardFunds function has the following usage syntax:

Listing 19: forwardFunds Usage Example

forwardFunds();

7.7.9 createSale

Function Name: createSale
Description: Internal function used to encapsulate more complex constructor logic
Function Type: N/A
Function Visibility: Internal
Function Modifiers: onlyTokenOwner
Return Type: N/A
Return Details: N/A

Code

The code for the createSale function is as follows:

7.7. 7. Functions 59

Tru Reputation Token Documentation, Release 0.1.9

Listing 20: createSale Code

function createSale(
uint256 _startTime,
uint256 _endTime,
address _token,
address _saleWallet,
address _tokenOwner)

internal onlyTokenOwner(_tokenOwner) {
// _startTime must be greater than or equal to now
require(now <= _startTime);

// _endTime must be greater than or equal to _startTime
require(_endTime >= _startTime);

// _salletWallet must be valid
require(TruAddress.isValid(_saleWallet) == true);

truToken = TruReputationToken(_token);
multiSigWallet = _saleWallet;
saleStartTime = _startTime;
saleEndTime = _endTime;

}

Note: The createSale argument uses the onlyTokenOwner modifier to ensure that no instance of the TruSale can be
created for TruReputationToken unless they are the owner of that contract. If that modifier is passed, the rest of the
logic is processed to construct the TruSale instance.

The createSale function performs the following:

• Ensures the _startTime timestamp argument is greater than the latest block timestamp.

• Ensures the _endTime timestamp argument is greater than the _startTime timestamp argument.

• Ensures the _saleWallet argument is a valid Ethereum Address.

• Sets the truToken variable to the instance of TruReputationToken from the _token argument.

• Sets the multiSigWallet variable to the _saleWallet argument.

• Sets the saleStartTime variable to the _startTime argument.

• Sets the saleEndTime variable to the _endTime argument.

Usage

The createSale function has the following usage syntax:

Listing 21: createSale Usage Example

createSale(1511930475,
1512016874,
0x123456789abcdefghijklmnopqrstuvwxyz98765,,
0x465328375xyzacefgijklmnopqrstuvwxyz66712,
0xa57htuju9abcdefghijehtitthtjiohjtoi02447);

60 Chapter 7. TruSale

Tru Reputation Token Documentation, Release 0.1.9

7.7.10 buyTokens

Function Name: buyTokens
Description: Private function execute purchase of TRU Tokens
Function Type: N/A
Function Visibility: Private
Function Modifiers: N/A
Return Type: N/A
Return Details: N/A

Code

The code for the buyTokens function is as follows:

Listing 22: buyTokens Code

function buyTokens(address _purchaser) private {
uint256 weiTotal = msg.value;

// If the Total wei is less than the minimum purchase, reject
require(weiTotal >= MIN_AMOUNT);

// If the Total wei is greater than the maximum stake, purchasers must be on the
→˓whitelist

if (weiTotal > MAX_AMOUNT) {
require(purchaserWhiteList[msg.sender]);

}

// Prevention to stop circumvention of Maximum Amount without being on the
→˓Whitelist

if (purchasedAmount[msg.sender] != 0 && !purchaserWhiteList[msg.sender]) {
uint256 totalPurchased = purchasedAmount[msg.sender];
totalPurchased = totalPurchased.add(weiTotal);
require(totalPurchased < MAX_AMOUNT);

}

uint256 tokenRate = BASE_RATE;

if (isPreSale) {
tokenRate = PRESALE_RATE;

}
if (isCrowdSale) {

tokenRate = SALE_RATE;
}

// Multiply Wei x Rate to get Number of Tokens to create (as a 10^18 subunit)
uint256 noOfTokens = weiTotal.mul(tokenRate);

// Add the wei to the running total
weiRaised = weiRaised.add(weiTotal);

// If the purchaser address has not purchased already, add them to the list
if (purchasedAmount[msg.sender] == 0) {

purchaserCount++;
}

(continues on next page)

7.7. 7. Functions 61

Tru Reputation Token Documentation, Release 0.1.9

(continued from previous page)

soldTokens = soldTokens.add(noOfTokens);

purchasedAmount[msg.sender] = purchasedAmount[msg.sender].add(msg.value);
tokenAmount[msg.sender] = tokenAmount[msg.sender].add(noOfTokens);

// Mint the Tokens to the Purchaser
truToken.mint(_purchaser, noOfTokens);
TokenPurchased(msg.sender,
_purchaser,
weiTotal,
noOfTokens);
forwardFunds();

}

The buyTokens function performs the following:

• Checks that the sent amount (msg.value) is equal to or greater than the MIN_AMOUNT variable. If it is not, it
will throw.

• Checks if the sent amount (msg.value) is greater than the MAX_AMOUNT variable. If it is, it will perform a
further check to see if the sender is on the Whitelist- if they are, it will proceed, if not it will throw. If the amount
is less than or equal to the MAX_AMOUNT variable, it will proceed.

• Checks that the cumulative total of this purchase, and any prior purchases do not exceed the MAX_AMOUNT
variable if the purchaser is not on the Whitelist. If it is, it will throw.

• Sets the Sale Rate to the default of the BASE_RATE variable.

• If the isPreSale variable is true sets the Sale Rate to PRESALE_RATE variable.

• If the isCrowdSale variable is true sets the Sale Rate to SALE_RATE variable.

• Calculates the number of tokens purchased.

• Increments the purchaserCount variable if this is the first purchase from this address.

• Adds the calculated token count to the soldTokens variable.

• Adds the msg.value to the purchasedAmount mapping for the purchaser.

• Adds the token amount to the tokenAmount mapping for the purchaser.

• Mints the token amount to the purchaser’s address.

• Fires the TokenPurchased event.

• Executes the forwardFunds function.

Usage

The buyTokens function has the following usage syntax:

Listing 23: buyTokens Usage Example

buyTokens(0xa57htuju9abcdefghijehtitthtjiohjtoi02447);

62 Chapter 7. TruSale

CHAPTER 8

TruPreSale

The TruPreSale Smart Contract acts a child class to the TruSale and is used for the main CrowdSale of the TruRepu-
tationToken.

Title: TruPreSale
Description: Smart Contract for the Pre-Sale of the TruReputationToken.
Author: Ian Bray, Tru Ltd
Solidity Version: 0.4.18
Relative Path: ./contracts/TruPreSale.sol
License: Apache 2 License
Current Version: 0.1.9

8.1 1. Imports & Dependencies

The following imports and dependencies exist for the TruPreSale Smart Contract:

Name Description
TruSale Parent Smart Contract for all TruReputationToken Token Sales
TruReputationToken Smart Contract for the Tru Reputation Token
SafeMath Zeppelin Solidity Library to perform mathematics safely inside Solidity

8.2 2. Variables

The following variables exist for the TruPreSale Smart Contract:

Variable Type Vis Details
PRESALE_CAP uint256 public Variable for the Pre-Sale cap

Default: 8000 * 10^18

63

https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

8.3 3. Enums

There are no enums for the TruPreSale Smart Contract.

8.4 4. Events

There are no events for the TruPreSale Smart Contract.

8.5 5. Mappings

There are no mappings for the TruPreSale Smart Contract.

8.6 6. Modifiers

There are no modifiers for the TruPreSale Smart Contract.

8.7 7. Functions

The following functions exist for the TruPreSale Smart Contract:

Name Description
TruPreSale Constructor Constructor for the TruPreSale Smart Contract
finalise Function to finalise Pre-Sale.
completion Internal function to complete Pre-Sale.

8.7.1 TruPreSale Constructor

Function Name: TruPreSale
Description: Constructor for the TruPreSale Smart Contract
Function Type: Constructor
Function Visibility: Public
Function Modifiers: N/A
Return Type: None
Return Details: N/A

Code

The code for the TruPreSale Constructor function is as follows:

64 Chapter 8. TruPreSale

Tru Reputation Token Documentation, Release 0.1.9

Listing 1: TruPreSale Constructor Code

unction TruPreSale(
uint256 _startTime,
uint256 _endTime,
address _token,
address _saleWallet) public TruSale(_startTime, _endTime, _token, _saleWallet)

{
isPreSale = true;
isCrowdSale = false;
cap = PRESALE_CAP;

}

The TruPreSale Constructor function performs the following:

• Executes the super TruSale Constructor function.

• Sets the isPreSale variable to true.

• Sets the isCrowdSale variable to false.

• Set the cap variable to equal the PRESALE_CAP variable value.

Usage

The TruPreSale Constructor function has the following usage syntax and arguments:

Argument Type Details
1 _startTime uint256 Sale start timestamp
2 _endTime uint256 Sale end timestamp
3 _token address Address of TruReputationToken Contract
4 _saleWallet address Address of TruPreSale wallet

Listing 2: TruPreSale Constructor Usage Example

TruPreSale(1511930475,
1512016874,
0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x987654321abcdefghijklmnopqrstuvwxyz12345);

8.7.2 finalise

Function Name: finalise
Description: Function to finalise Pre-Sale.
Function Type: N/A
Function Visibility: Public
Function Modifiers: ref:ownable-only-owner
Return Type: None
Return Details: N/A

Code

The code for the finalise function is as follows:

8.7. 7. Functions 65

Tru Reputation Token Documentation, Release 0.1.9

Listing 3: finalise Code

function finalise() public onlyOwner {
require(!isCompleted);
require(hasEnded());

completion();
Completed();

isCompleted = true;
}

The finalise function performs the following:

• Checks that the isCompleted variable is set to false. If not, it will throw.

• Checks the hasEnded function returns true. If not, it will throw.

• Executes the completion function.

• Fires the Completed event.

• Sets isCompleted variable to true.

Usage

The finalise function has the following usage syntax:

Listing 4: finalise Usage Example

finalise();

8.7.3 completion

Function Name: completion
Description: Internal function to complete Pre-Sale.
Function Type: N/A
Function Visibility: Internal
Function Modifiers: N/A
Return Type: None
Return Details: N/A

Code

The code for the completion function is as follows:

Listing 5: completion Code

function completion() internal {

// Double sold pool to allocate to Tru Resource Pools
uint256 poolTokens = truToken.totalSupply();

(continues on next page)

66 Chapter 8. TruPreSale

Tru Reputation Token Documentation, Release 0.1.9

(continued from previous page)

// Issue poolTokens to multisig wallet
truToken.mint(multiSigWallet, poolTokens);
truToken.finishMinting(true, false);
truToken.transferOwnership(msg.sender);

}

The completion function performs the following:

• Calculates the number of tokens sold in this Pre-Sale and mints the same amount again into the multiSigWallet
Sale wallet for use by Tru Ltd as per the Tru Reputation Protocol Whitepaper.

• Executes the finishMinting function to end Pre-Sale minting and await CrowdSale minting

• Transfers ownership of the TruReputationToken back to the executing account now the Pre-Sale is complete.

Usage

The completion function has the following usage syntax:

Listing 6: completion Usage Example

completion();

8.7. 7. Functions 67

https://tru.ltd/whitepaper

Tru Reputation Token Documentation, Release 0.1.9

68 Chapter 8. TruPreSale

CHAPTER 9

TruCrowdSale

The TruCrowdSale Smart Contract acts a child class to the TruSale and is used for the main CrowdSale of the TruRep-
utationToken.

Title: TruCrowdSale
Description: Smart Contract for the CrowdSale of the TruReputationToken.
Author: Ian Bray, Tru Ltd
Solidity Version: 0.4.18
Relative Path: ./contracts/TruCrowdSale.sol
License: Apache 2 License
Current Version: 0.1.9

9.1 1. Imports & Dependencies

The following imports and dependencies exist for the TruCrowdSale Smart Contract:

Name Description
TruSale Parent Smart Contract for all TruReputationToken Token Sales
TruReputationToken Smart Contract for the Tru Reputation Token
SafeMath Zeppelin Solidity Library to perform mathematics safely inside Solidity

9.2 2. Variables

The following variables exist for the TruCrowdSale Smart Contract:

Variable Type Vis Details
TOTAL_CAP uint256 public Variable for the Total cap for the Crowdsale & Pre-Sale
existingSupply uint256 private Variable containing the existing TruReputationToken supply.

69

https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

9.3 3. Enums

There are no enums for the TruCrowdSale Smart Contract.

9.4 4. Events

There are no events for the TruCrowdSale Smart Contract.

9.5 5. Mappings

There are no mappings for the TruCrowdSale Smart Contract.

9.6 6. Modifiers

There are no modifiers for the TruCrowdSale Smart Contract.

9.7 7. Functions

The following functions exist for the TruCrowdSale Smart Contract:

Name Description
TruCrowdSale Constructor Constructor for the TruCrowdSale Smart Contract
finalise Function to finalise CrowdSale.
completion Internal function to complete CrowdSale.

9.7.1 TruCrowdSale Constructor

Function Name: TruCrowdSale
Description: Constructor for the TruCrowdSale Smart Contract
Function Type: Constructor
Function Visibility: Public
Function Modifiers: N/A
Return Type: None
Return Details: N/A

Code

The code for the TruCrowdSale Constructor function is as follows:

70 Chapter 9. TruCrowdSale

Tru Reputation Token Documentation, Release 0.1.9

Listing 1: TruCrowdSale Constructor Code

function TruCrowdSale(
uint256 _startTime,
uint256 _endTime,
address _token,
address _saleWallet,
uint256 _currentSupply,
uint256 _currentRaise) public TruSale(_startTime, _endTime, _token, _saleWallet)
{

isPreSale = false;
isCrowdSale = true;
uint256 remainingCap = TOTAL_CAP.sub(_currentRaise);
cap = remainingCap;
existingSupply = _currentSupply;

}

The TruCrowdSale Constructor function performs the following:

• Executes the super TruSale Constructor function.

• Sets the isPreSale variable to false.

• Sets the isCrowdSale variable to true.

• Calculates the cap variable by removing the _currentRaise argument from the TOTAL_CAP variable.

• Sets existingSupply variable to the _currentSupply argument.

Usage

The TruCrowdSale Constructor function has the following usage syntax and arguments:

Argument Type Details
1 _startTime uint256 Sale start timestamp
2 _endTime uint256 Sale end timestamp
3 _token address Address of TruReputationToken Contract
4 _saleWallet address Address of TruCrowdSale wallet
5 _currentSupply uint256 Current amount of TruReputationToken tokens issued.
6 _currentRaise uint256 Current amount of ETH raised in the TruPreSale

9.7. 7. Functions 71

Tru Reputation Token Documentation, Release 0.1.9

Listing 2: TruCrowdSale Constructor Usage Example

TruCrowdSale(1511930475,
1512016874,
0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x987654321abcdefghijklmnopqrstuvwxyz12345,
8000000000000000000000,
10000000000000000000000000);

9.7.2 finalise

Function Name: finalise
Description: Function to finalise CrowdSale.
Function Type: N/A
Function Visibility: Public
Function Modifiers: ref:ownable-only-owner
Return Type: None
Return Details: N/A

Code

The code for the finalise function is as follows:

Listing 3: finalise Code

function finalise() public onlyOwner {
require(!isCompleted);
require(hasEnded());

completion();
Completed();

isCompleted = true;
}

The finalise function performs the following:

• Checks that the isCompleted variable is set to false. If not, it will throw.

• Checks the hasEnded function returns true. If not, it will throw.

• Executes the completion function.

• Fires the Completed event.

• Sets isCompleted variable to true.

Usage

The finalise function has the following usage syntax:

72 Chapter 9. TruCrowdSale

Tru Reputation Token Documentation, Release 0.1.9

Listing 4: finalise Usage Example

finalise();

9.7.3 completion

Function Name: completion
Description: Internal function to complete CrowdSale.
Function Type: N/A
Function Visibility: Internal
Function Modifiers: N/A
Return Type: None
Return Details: N/A

Code

The code for the completion function is as follows:

Listing 5: completion Code

function completion() internal {

// Double sold pool to allocate to Tru Resource Pools
uint256 poolTokens = truToken.totalSupply();
poolTokens = poolTokens.sub(existingSupply);

// Issue poolTokens to multisig wallet
truToken.mint(multiSigWallet, poolTokens);
truToken.finishMinting(false, true);
truToken.transferOwnership(msg.sender);
truToken.releaseTokenTransfer();

}

The completion function performs the following:

• Calculates the number of tokens sold in this CrowdSale and mints the same amount again into the multiSigWallet
Sale wallet for use by Tru Ltd as per the Tru Reputation Protocol Whitepaper.

• Executes the finishMinting function to finalise all minting activity for the TruReputationToken

• Transfers ownership of the TruReputationToken back to the executing account now the Crowdsale is complete.

• Executes releaseTokenTransfer function.

Usage

The completion function has the following usage syntax:

Listing 6: completion Usage Example

completion();

9.7. 7. Functions 73

https://tru.ltd/whitepaper

Tru Reputation Token Documentation, Release 0.1.9

74 Chapter 9. TruCrowdSale

CHAPTER 10

BasicToken

Title: BasicToken
Description: Zeppelin Solidity Smart Contract that implements a Basic form of the ERC-20 standard without

allowances, approvals, or transferFrom
Author: Smart Contract Solutions, Inc.
Solidity Ver-
sion:

^0.4.18

Relative
Path:

./contracts/supporting/BasicToken.sol

License: MIT License
Current
Version:

1.4.0

Original
Source:

BasicToken Source

10.1 1. Imports & Dependencies

The following imports and dependencies exist for the BasicToken Smart Contract :

Name Description
ERC20Basic Zeppelin Solidity Smart Contract for a Basic ERC-20 Compliance
SafeMath Zeppelin Solidity Library to perform mathematics safely inside Solidity

10.2 2. Variables

There are no variables for the BasicToken Smart Contract.

75

https://github.com/OpenZeppelin/zeppelin-solidity
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/master/LICENSE
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/v1.4.0/contracts/token/BasicToken.sol
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

10.3 3. Enums

There are no enums for the BasicToken Smart Contract.

10.4 4. Events

There are no events for the BasicToken Smart Contract.

10.5 5. Mappings

The following mappings exist for the BasicToken Smart Contract:

Name Mapping Type Description
balances address => uint256 Mapping to track token balance of an address

10.6 6. Modifiers

There are no modifiers for the BasicToken Smart Contract.

10.7 7. Functions

The following functions exist for the BasicToken Smart Contract:

Name Description
transfer Function to transfer tokens.
balanceOf Function to get the token balance of a given address

10.7.1 transfer

Function Name: transfer
Description: Function to transfer tokens
Function Type: N/A
Function Visibility: Public
Function Modifiers: N/A
Return Type: bool
Return Details: returns true upon successful transfer

Code

The code for the transfer function is as follows:

76 Chapter 10. BasicToken

Tru Reputation Token Documentation, Release 0.1.9

Listing 1: transfer 1.4.0 Code

function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);

// SafeMath.sub will throw if there is not enough balance.
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;

}

The transfer function performs the following:

• Checks the _to argument is a valid Ethereum address. If not, it will throw.

• Checks that the _value argument is less than or equal to the msg.sender token balance. If not, it will throw

• Removes the _value from the msg.sender token balance. If the balance is insufficient, it will throw

• Adds the _value to the _to token balance.

• Fires the Transfer event

• Returns true

Usage

The transfer function has the following usage syntax and arguments:

Argument Type Details
1 _to address Address to be transfer tokens to
1 _value uint256 Amount of tokens to transfer

Listing 2: transfer Usage Example

transfer(0x123456789abcdefghijklmnopqrstuvwxyz98765, 100);

10.7.2 balanceOf

Function Name: balanceOf
Description: Function to get the token balance of an address
Function Type: View
Function Visibility: Public
Function Modifiers: N/A
Return Type: uint256
Return Details: returns token balance of address

Code

The code for the balanceOf function is as follows:

10.7. 7. Functions 77

Tru Reputation Token Documentation, Release 0.1.9

Listing 3: balanceOf 1.4.0 Code

function balanceOf(address _owner) public view returns (uint256 balance) {
return balances[_owner];

}

The balanceOf function performs the following:

• returns the balance of the supplied _owner address

Usage

The balanceOf function has the following usage syntax and arguments:

Argument Type Details
1 _owner address Address check the token balance of

Listing 4: balanceOf Usage Example

balanceOf(0x123456789abcdefghijklmnopqrstuvwxyz98765);

78 Chapter 10. BasicToken

CHAPTER 11

ERC20

Title: ERC20
Description: Zeppelin Solidity Smart Contract that provides the interface required to implement an ERC20

compliant token.
Author: Smart Contract Solutions, Inc.
Solidity Ver-
sion:

^0.4.18

Relative Path: ./contracts/supporting/ERC20.sol
License: MIT License
Current Ver-
sion:

1.4.0

Original
Source:

ERC20 Source

11.1 1. Imports & Dependencies

The following imports and dependencies exist for the ERC20 Smart Contract:

Name Description
ERC20Basic Zeppelin Solidity Smart Contract for a Basic ERC-20 Compliance

11.2 2. Variables

There are no variables for the ERC20 Smart Contract.

79

https://github.com/OpenZeppelin/zeppelin-solidity
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/master/LICENSE
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/v1.4.0/contracts/token/ERC20.sol
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

11.3 3. Enums

There are no enums for the ERC20 Smart Contract.

11.4 4. Events

The following events exist for the ERC20 Smart Contract:

Name Description
Approval Event to track when approval is granted to a spender on a given address

11.4.1 Approval

Event Name: Approval
Description: Event to track when approval is granted to a spender on a given address

Usage

The Approval event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 owner address Yes Address that is granting approval
2 spender address Yes Address that has been approved
3 value uint256 No Amount of tokens spender is allowed to spend

Listing 1: Approval Usage Example

Approval(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x123456789abcdefghijklmnopqrstuvwxyz12345,
100);

11.5 5. Mappings

The are no mappings for the ERC20 Smart Contract.

11.6 6. Modifiers

There are no modifiers for the ERC20 Smart Contract.

80 Chapter 11. ERC20

Tru Reputation Token Documentation, Release 0.1.9

11.7 7. Functions

The following functions exist for the ERC20 Smart Contract:

Name Description
allowance Function to get the approved allowance for a transfer of tokens from an address by a spender address
approve Function to approve a particular allowance to be transferred by that spender address on the target

address
transfer-
From

Function transfer tokens from an address to another invoked by an authorised spender address

11.7.1 allowance

Function Name: allowance
Description: Function to get the approved allowance for a transfer of tokens from an address by a spender

address
Function Type: View
Function Visibil-
ity:

Public

Function Modi-
fiers:

N/A

Return Type: uint256
Return Details: returns the remaining allowance the spender has on the target address

Code

The code for the allowance function is an interface and it is defined as follows:

Listing 2: allowance 1.4.0 Code

function allowance(address owner, address spender) public view returns (uint256);

Usage

The allowance function has the following usage syntax and arguments:

Argument Type Details
1 owner address Address that spender has been given an allowance on
2 spender address Address of the spender

Listing 3: allowance Usage Example

allowance(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x123456789abcdefghijklmnopqrstuvwxyz12345);

11.7. 7. Functions 81

Tru Reputation Token Documentation, Release 0.1.9

11.7.2 approve

Function
Name:

approve

Description: Function to approve a spender address to have a particular allowance to be transferred or spent
by that spender address on the target address

Function
Type:

View

Function Vis-
ibility:

N/A

Function
Modifiers:

N/A

Return Type: bool
Return De-
tails:

returns a bool to denote success or failure to approve

Code

The code for the approve function is an interface and it is defined as follows:

Listing 4: approve 1.4.0 Code

function approve(address spender, uint256 value) public returns (bool);

Usage

The approve function has the following usage syntax and arguments:

Argument Type Details
1 spender address Address be granted an allowance

Listing 5: approve Usage Example

approve(0x123456789abcdefghijklmnopqrstuvwxyz98765, 100);

11.7.3 transferFrom

Function Name: transferFrom
Description: Function transfer tokens from an address to another invoked by an authorised spender ad-

dress
Function Type: N/A
Function Visibility: Public
Function Modi-
fiers:

N/A

Return Type: bool
Return Details: returns a bool to denote success or failure to transfer

82 Chapter 11. ERC20

Tru Reputation Token Documentation, Release 0.1.9

Code

The code for the transferFrom function is an interface and it is defined as follows:

Listing 6: transferFrom 1.4.0 Code

function transferFrom(address from, address to, uint256 value) public returns (bool);

Usage

The transferFrom function has the following usage syntax and arguments:

Argument Type Details
1 from address Address to transfer tokens from
2 to address Address to send tokens to
3 value uint256 Amount of tokens to transfer

Listing 7: transferFrom Usage Example

transferFrom(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x123456789abcdefghijklmnopqrstuvwxyz54321,
100);

11.7. 7. Functions 83

Tru Reputation Token Documentation, Release 0.1.9

84 Chapter 11. ERC20

CHAPTER 12

ERC20Basic

Title: ERC20Basic
Description: Zeppelin Solidity Smart Contract that provides a basic interface required to implement an ERC20

compliant token.
Author: Smart Contract Solutions, Inc.
Solidity Ver-
sion:

^0.4.18

Relative Path: ./contracts/supporting/ERC20Basic.sol
License: MIT License
Current Ver-
sion:

1.4.0

Original
Source:

ERC20Basic Source

12.1 1. Imports & Dependencies

There are no imports or dependencies for the ERC20Basic Smart Contract.

12.2 2. Variables

The following variables exist for the ERC20Basic Smart Contract:

Variable Type Vis Details
totalSupply uint256 public Variable to provide total count of all token in circulation for this token

85

https://github.com/OpenZeppelin/zeppelin-solidity
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/master/LICENSE
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/v1.4.0/contracts/token/ERC20Basic.sol

Tru Reputation Token Documentation, Release 0.1.9

12.3 3. Enums

There are no enums for the ERC20Basic Smart Contract.

12.4 4. Events

The following events exist for the ERC20Basic Smart Contract:

Name Description
Transfer Event to track when a transfer of tokens occurs between addresses

12.4.1 Transfer

Event Name: Transfer
Description: Event to track when a transfer of tokens occurs between addresses

Usage

The Transfer event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 from address Yes Address where tokens are being transferred from
2 to address Yes Address where tokens are being transferred to
3 value uint256 No Amount of tokens to transfer

Listing 1: Transfer Usage Example

Transfer(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x123456789abcdefghijklmnopqrstuvwxyz12345,
100);

12.5 5. Mappings

The are no mappings for the ERC20Basic Smart Contract.

12.6 6. Modifiers

There are no modifiers for the ERC20Basic Smart Contract.

86 Chapter 12. ERC20Basic

Tru Reputation Token Documentation, Release 0.1.9

12.7 7. Functions

The following functions exist for the ERC20Basic Smart Contract:

Name Description
balanceOf Function to get the token balance of a supplied address
transfer Function to allow transferring tokens from one address to another

12.7.1 balanceOf

Function Name: balanceOf
Description: Function to get the token balance of a supplied address
Function Type: View
Function Visibility: Public
Function Modifiers: N/A
Return Type: uint256
Return Details: returns the token balance of the supplied address

Code

The code for the balanceOf function is an interface and it is defined as follows:

Listing 2: balanceOf 1.4.0 Code

function balanceOf(address who) public view returns (uint256);

Usage

The balanceOf function has the following usage syntax and arguments:

Argument Type Details
1 who address Address to retrieve the token balance of

Listing 3: allowance Usage Example

balanceOf(0x123456789abcdefghijklmnopqrstuvwxyz98765);

12.7.2 transfer

Function Name: transfer
Description: Function to allow transferring tokens from one address to another
Function Type: N/A
Function Visibility: N/A
Function Modifiers: N/A
Return Type: bool
Return Details: returns a bool to denote success or failure to transfer tokens

12.7. 7. Functions 87

Tru Reputation Token Documentation, Release 0.1.9

Code

The code for the transfer function is an interface and it is defined as follows:

Listing 4: transfer 1.4.0 Code

function transfer(address to, uint256 value) public returns (bool);

Usage

The transfer function has the following usage syntax and arguments:

Argument Type Details
1 to address Address to transfer tokens to
2 value uint256 Amount of tokens to transfer

Listing 5: transfer Usage Example

transfer(0x123456789abcdefghijklmnopqrstuvwxyz98765, 100);

88 Chapter 12. ERC20Basic

CHAPTER 13

Haltable

Title: Haltable
Description: Modified Token Market Smart Contract that provides a capability to halt a contract (namely a

CrowdSale). Updated by Tru Ltd.
Author: TokenMarket Ltd/Updated by Ian Bray, Tru Ltd
Solidity Ver-
sion:

0.4.18

Relative
Path:

./contracts/supporting/Haltable.sol

License: Apache 2 License
Current Ver-
sion:

0.1.9

Original
Source:

Haltable Source

13.1 1. Imports & Dependencies

The following imports and dependencies exist for the Haltable Smart Contract:

Name Description
Ownable Zeppelin Solidity Smart Contract for Ownership capabilities in a token

13.2 2. Variables

The following variables exist for the Haltable Smart Contract:

Variable Type Vis Details
halted bool public Variable to indicate whether the contract is halted or not

89

https://github.com/TokenMarketNet/ico/
https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE
https://raw.githubusercontent.com/TokenMarketNet/ico/master/contracts/Haltable.sol
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

13.3 3. Enums

There are no enums for the Haltable Smart Contract.

13.4 4. Events

The following events exist for the Haltable Smart Contract:

Name Description
HaltStatus Event to track halted status changes

13.4.1 HaltStatus

Event Name: HaltStatus
Description: Event to track halted status changes

Usage

The HaltStatus event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 status bool No Whether the contract is halted or not

Listing 1: HaltStatus Usage Example

HaltStatus(true);

13.5 5. Mappings

The are no mappings for the Haltable Smart Contract.

13.6 6. Modifiers

The following modifiers exist for the Haltable Smart Contract:

Name Description
stopInEmergency Modifier that requires the contract is not halted
onlyInEmergency Modifier that requires the contract is halted

90 Chapter 13. Haltable

Tru Reputation Token Documentation, Release 0.1.9

13.6.1 stopInEmergency

Modifier Name: stopInEmergency
Description: Modifier that requires the contract is not halted

Code

The code for the stopInEmergency modifier is as follows:

Listing 2: stopInEmergency Code

modifier stopInEmergency {
require(!halted);
_;

}

The stopInEmergency function performs the following:

• Checks that the halted variable is false otherwise it throws

13.6.2 onlyInEmergency

Modifier Name: onlyInEmergency
Description: Modifier that requires the contract is halted

Code

The code for the onlyInEmergency modifier is as follows:

Listing 3: onlyInEmergency Code

modifier onlyInEmergency {
require(halted);
_;

}

The onlyInEmergency function performs the following:

• Checks that the halted variable is true otherwise it throws

13.7 7. Functions

The following functions exist for the Haltable Smart Contract:

Name Description
halt Function to halt the contract
unhalt Function to unhalt the contract

13.7. 7. Functions 91

Tru Reputation Token Documentation, Release 0.1.9

13.7.1 halt

Function Name: halt
Description: Function to halt the contract
Function Type: N/A
Function Visibility: External
Function Modifiers: onlyOwner
Return Type: None
Return Details: N/A

Code

The code for the halt function is as follows:

Listing 4: halt Code

function halt() external onlyOwner {
halted = true;
HaltStatus(halted);

}

The halt function performs the following:

• Sets the halted variable to true

• Fires the HaltStatus event

Usage

The halt function has the following usage syntax:

Listing 5: halt Usage Example

halt();

13.7.2 unhalt

Function Name: unhalt
Description: Function to unhalt the contract
Function Type: N/A
Function Visibility: External
Function Modifiers: onlyOwner, onlyInEmergency
Return Type: None
Return Details: N/A

Code

The code for the unhalt function is as follows:

92 Chapter 13. Haltable

Tru Reputation Token Documentation, Release 0.1.9

Listing 6: unhalt Code

function unhalt() external onlyOwner onlyInEmergency {
halted = false;
HaltStatus(halted);

}

The unhalt function performs the following:

• Sets the halted variable to false

• Fires the HaltStatus event

Usage

The unhalt function has the following usage syntax:

Listing 7: unhalt Usage Example

unhalt();

13.7. 7. Functions 93

Tru Reputation Token Documentation, Release 0.1.9

94 Chapter 13. Haltable

CHAPTER 14

Ownable

Title: Ownable
Description: Zeppelin Solidity Smart Contract that provides ownership capabilities to a contract.
Author: Smart Contract Solutions, Inc.
Solidity Version: ^0.4.18
Relative Path: ./contracts/supporting/Ownable.sol
License: MIT License
Current Version: 1.4.0
Original Source: Ownable Source

14.1 1. Imports & Dependencies

There are no imports and dependencies for the Ownable Smart Contract.

14.2 2. Variables

The following variables exist for the Ownable Smart Contract:

Variable Type Vis Details
owner address public Variable containing the address of the contract owner

14.3 3. Enums

There are no enums for the Ownable Smart Contract.

95

https://github.com/OpenZeppelin/zeppelin-solidity
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/master/LICENSE
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/v1.4.0/contracts/ownership/Ownable.sol

Tru Reputation Token Documentation, Release 0.1.9

14.4 4. Events

The following events exist for the Ownable Smart Contract:

Name Description
OwnershipTransferred Event to track change of ownership

14.4.1 OwnershipTransferred

Event Name: OwnershipTransferred
Description: Event to track change of ownership

Usage

The OwnershipTransferred event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 previousOwner address Yes Address of the previous owner
2 newOwner address Yes Address of the new owner

Listing 1: OwnershipTransferred Usage Example

OwnershipTransferred(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x123456789abcdefghijklmnopqrstuvwxyz54321);

14.5 5. Mappings

The are no mappings for the Ownable Smart Contract.

14.6 6. Modifiers

The following modifiers exist for the Ownable Smart Contract:

Name Description
onlyOwner Modifier that requires the contract owner is the sender of the transaction

14.6.1 onlyOwner

Modifier Name: onlyOwner
Description: Modifier that requires the contract owner is the sender of the transaction

96 Chapter 14. Ownable

Tru Reputation Token Documentation, Release 0.1.9

Code

The code for the onlyOwner modifier is as follows:

Listing 2: onlyOwner 1.4.0 Code

modifier onlyOwner() {
require(msg.sender == owner);
_;

}

The onlyOwner function performs the following:

• Checks that the transaction sender address is the same as the owner address variable otherwise it throws

14.7 7. Functions

The following functions exist for the Ownable Smart Contract:

Name Description
Ownable Constructor Constructor Function for Ownable Contract
transferOwnership Function transfer the contract ownership

14.7.1 Ownable Constructor

Function Name: Ownable
Description: Constructor for the Ownable Smart Contract
Function Type: Constructor
Function Visibility: Public
Function Modifiers: N/A
Return Type: None
Return Details: N/A

Code

The code for the Ownable Constructor function is as follows:

Listing 3: Ownable Constructor 1.4.0 Code

function Ownable() public {
owner = msg.sender;

}

The Ownable Constructor function performs the following:

• Sets the owner variable msg.sender

Usage

The Ownable Constructor function has the following usage syntax:

14.7. 7. Functions 97

Tru Reputation Token Documentation, Release 0.1.9

Listing 4: Ownable Constructor Usage Example

Ownable();

14.7.2 transferOwnership

Function Name: transferOwnership
Description: Function transfer the contract ownership
Function Type: N/A
Function Visibility: Public
Function Modifiers: onlyOwner
Return Type: None
Return Details: N/A

Code

The code for the transferOwnership function is as follows:

Listing 5: transferOwnership 1.4.0 Code

function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;

}

The transferOwnership function performs the following:

• Validates that the supplied newOwner argument is a valid Ethereum address. If it is not, it will throw.

• Fires the OwnershipTransferred event.

• sets the owner to the newOwner argument value.

Usage

The transferOwnership function has the following usage syntax:

Listing 6: transferOwnership Usage Example

transferOwnership(0x123456789abcdefghijklmnopqrstuvwxyz98765);

98 Chapter 14. Ownable

CHAPTER 15

ReleaseableToken

Title: ReleaseableToken
Description: Smart Contract derived from ReleaseableToken by Token Market with additional functionality

for the TruReputationToken.
Author: Ian Bray, Tru Ltd
Solidity Ver-
sion:

0.4.18

Relative
Path:

./contracts/supporting/ReleaseableToken.sol

License: Apache 2 License
Current Ver-
sion:

0.1.9

Original
Source:

ReleaseableToken Source

15.1 1. Imports & Dependencies

The following imports and dependencies exist for the ReleaseableToken Solidity Library:

Name Description
Ownable Zeppelin Solidity Smart Contract that provides ownership capabilities to a contract.
StandardToken Zeppelin Solidity Smart Contract for a Standard ERC-20 Token

15.2 2. Variables

The following variables exist for the ReleaseableToken Smart Contract:

99

https://github.com/TokenMarketNet/ico/
https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE
https://raw.githubusercontent.com/TokenMarketNet/ico/master/contracts/ReleasableToken.sol
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

Variable Type Vis Details
releaseAgent address public Variable containing the address of the Release Agent
released bool public Variable for whether the token is released or not

Default: false

15.3 3. Enums

There are no enums for the ReleaseableToken Smart Contract.

15.4 4. Events

The following events exist for the ReleaseableToken Smart Contract:

Name Description
Released Event to notify when a token is released
ReleaseAgentSet Event to notify when a releaseAgent is set
TransferAgentSet Event to notify when a Transfer Agent is set or updated

15.4.1 Released

Event Name: Released
Description: Event to notify when a token is released

Usage

The Released event has the following usage syntax:

Listing 1: Released Usage Example

Released();

15.4.2 ReleaseAgentSet

Event Name: ReleaseAgentSet
Description: Event to notify when a releaseAgent is set

Usage

The ReleaseAgentSet event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 releaseAgent address Yes Address of new releaseAgent

100 Chapter 15. ReleaseableToken

Tru Reputation Token Documentation, Release 0.1.9

Listing 2: ReleaseAgentSet Usage Example

ReleaseAgentSet(0x123456789abcdefghijklmnopqrstuvwxyz98765);

15.4.3 TransferAgentSet

Event Name: TransferAgentSet
Description: Event to notify when a Transfer Agent is set or updated

Usage

The TransferAgentSet event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 transferAgent address Yes Address of new Transfer Agent
2 status bool Yes Whether Transfer Agent is enabled or disabled

Listing 3: TransferAgentSet Usage Example

TransferAgentSet(0x123456789abcdefghijklmnopqrstuvwxyz98765, true);

15.5 5. Mappings

The following mappings exist for the ReleaseableToken Smart Contract:

Name Mapping Type Description
transferAgents address => uint256 Mapping to status of transfer agents

15.6 6. Modifiers

The following modifiers exist for the ReleaseableToken Smart Contract:

Name Description
canTransfer Modifier that checks whether token is in a transferable state
inReleaseState Modifier that checks whether token is in a given released state
onlyReleaseAgent Modifier that checks whether the executor is the releaseAgent

15.6.1 canTransfer

Modifier Name: canTransfer
Description: Modifier that checks whether token is in a transferable state

15.5. 5. Mappings 101

Tru Reputation Token Documentation, Release 0.1.9

Code

The code for the canTransfer modifier is as follows:

Listing 4: canTransfer Code

modifier canTransfer(address _sender) {
require(released || transferAgents[_sender]);
_;

}

The canTransfer function performs the following:

• Checks that the released variable is true and that the _sender argument is in the transferAgents mapping other-
wise it throws

15.6.2 inReleaseState

Modifier Name: inReleaseState
Description: Modifier that checks whether token is in a given released state

Code

The code for the inReleaseState modifier is as follows:

Listing 5: inReleaseState Code

modifier inReleaseState(bool releaseState) {
require(releaseState == released);
_;

}

The inReleaseState function performs the following:

• Checks that the supplied releaseState argument matches the released variable otherwise it throws

15.6.3 onlyReleaseAgent

Modifier Name: onlyReleaseAgent
Description: Modifier that checks whether the executor is the releaseAgent

Code

The code for the onlyReleaseAgent modifier is as follows:

Listing 6: onlyReleaseAgent Code

modifier onlyReleaseAgent() {
require(msg.sender == releaseAgent);
_;

}

102 Chapter 15. ReleaseableToken

Tru Reputation Token Documentation, Release 0.1.9

The onlyReleaseAgent function performs the following:

• Checks that the transaction sender address matches the releaseAgent address otherwise it throws

15.7 7. Functions

The following functions exist for the ReleaseableToken Smart Contract:

Name Description
setReleaseAgent Function to set the* releaseAgent variable
setTransferAgent Function to set or update the* transferAgents mapping
releaseTokenTransfer Function to release the token
transfer Function to override transfer function
transferFrom Function to override transferFrom function

15.7.1 setReleaseAgent

Function Name: setReleaseAgent
Description: Function to set the* releaseAgent variable
Function Type: N/A
Function Visibility: Public
Function Modifiers: onlyOwner, inReleaseState
Return Type: None
Return Details: N/A

Code

The code for the setReleaseAgent function is as follows:

Listing 7: setReleaseAgent Code

function setReleaseAgent(address addr) public onlyOwner inReleaseState(false) {
ReleaseAgentSet(addr);
// We don't do interface check here as we might want to a normal wallet address

→˓to act as a release agent
releaseAgent = addr;

}

The setReleaseAgent function performs the following:

• Fires the ReleaseAgentSet event

• Sets the releaseAgent variable to the addr argument

Usage

The setReleaseAgent function has the following usage syntax:

15.7. 7. Functions 103

Tru Reputation Token Documentation, Release 0.1.9

Listing 8: setReleaseAgent Usage Example

setReleaseAgent(0x123456789abcdefghijklmnopqrstuvwxyz98765);

15.7.2 setTransferAgent

Function Name: setTransferAgent
Description: Function to set or update the* transferAgents mapping
Function Type: N/A
Function Visibility: Public
Function Modifiers: onlyOwner, inReleaseState
Return Type: None
Return Details: N/A

Code

The code for the setTransferAgent function is as follows:

Listing 9: setTransferAgent Code

function setTransferAgent(address addr, bool state) public onlyOwner
→˓inReleaseState(false) {

TransferAgentSet(addr, state);
transferAgents[addr] = state;

}

The setTransferAgent function performs the following:

• Fires the TransferAgentSet event

• Add the supplied addr and state to the transferAgents mapping

Usage

The setTransferAgent function has the following usage syntax:

Listing 10: setTransferAgent Usage Example

setTransferAgent(0x123456789abcdefghijklmnopqrstuvwxyz98765, true);

15.7.3 releaseTokenTransfer

Function Name: releaseTokenTransfer
Description: Function to release the token
Function Type: N/A
Function Visibility: Public
Function Modifiers: onlyReleaseAgent
Return Type: None
Return Details: N/A

104 Chapter 15. ReleaseableToken

Tru Reputation Token Documentation, Release 0.1.9

Code

The code for the releaseTokenTransfer function is as follows:

Listing 11: releaseTokenTransfer Code

function releaseTokenTransfer() public onlyReleaseAgent {
Released();
released = true;

}

The releaseTokenTransfer function performs the following:

• Fires the Released event

• Sets the released variable to true

Usage

The releaseTokenTransfer function has the following usage syntax:

Listing 12: releaseTokenTransfer Usage Example

releaseTokenTransfer();

15.7.4 transfer

Function Name: transfer
Description: Function to override transfer function
Function Type: N/A
Function Visibility: Public
Function Modifiers: canTransfer
Return Type: bool
Return Details: Returns whether the transfer was successful or not

Code

The code for the transfer function is as follows:

Listing 13: transfer Code

function transfer(address _to,
uint _value) public canTransfer(msg.sender) returns (bool success) {

return super.transfer(_to, _value);
}

The transfer function performs the following:

• calls the transfer super function

15.7. 7. Functions 105

Tru Reputation Token Documentation, Release 0.1.9

Usage

The transfer function has the following usage syntax and arguments:

Argument Type Details
1 _to address Address to be sent _value to
2 _value uint Value of tokens to send to _to address

Listing 14: transfer Usage Example

transfer(0x123456789abcdefghijklmnopqrstuvwxyz98765, true);

15.7.5 transferFrom

Function Name: transferFrom
Description: Function to override transferFrom function
Function Type: N/A
Function Visibility: Public
Function Modifiers: canTransfer
Return Type: bool
Return Details: Returns whether the transferFrom was successful or not

Code

The code for the transferFrom function is as follows:

Listing 15: transferFrom Code

function transferFrom(address _from,
address _to,
uint _value) public canTransfer(_from) returns (bool success) {

return super.transferFrom(_from, _to, _value);
}

The transferFrom function performs the following:

• calls the transferFrom super function

Usage

The transferFrom function has the following usage syntax and arguments:

Argument Type Details
1 _fro address Address to be sent _value from
2 _to address Address to be sent _value to
3 _value uint Value of tokens to send to _to address

106 Chapter 15. ReleaseableToken

Tru Reputation Token Documentation, Release 0.1.9

Listing 16: transferFrom Usage Example

transferFrom(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x423456789abcdefghijklmnopqrstuvwxyz12345,
true);

15.7. 7. Functions 107

Tru Reputation Token Documentation, Release 0.1.9

108 Chapter 15. ReleaseableToken

CHAPTER 16

SafeMath

Title: SafeMath
Description: Zeppelin Solidity Library for Math operations with safety checks throws on error.
Author: Smart Contract Solutions, Inc.
Solidity Version: ^0.4.18
Relative Path: ./contracts/supporting/SafeMath.sol
License: MIT License
Current Version: 1.4.0
Original Source: SafeMath Source

No modifications have been made to this Solidity Library from the original source.

16.1 1. Imports & Dependencies

There are no imports and dependencies exist for the SafeMath Solidity Library.

16.2 2. Variables

There are no variables for the SafeMath Solidity Library.

16.3 3. Enums

There are no enums for the SafeMath Solidity Library.

109

https://github.com/OpenZeppelin/zeppelin-solidity
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/master/LICENSE
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/v1.4.0/contracts/math/SafeMath.sol

Tru Reputation Token Documentation, Release 0.1.9

16.4 4. Events

There are no events for the SafeMath Solidity Library.

16.5 5. Mappings

There are no mappings for the SafeMath Solidity Library.

16.6 6. Modifiers

There are no modifiers for the SafeMath Solidity Library.

16.7 7. Functions

The following functions exist for the SafeMath Smart Contract:

Name Description
mul Function to safely multiply two numbers
div Function to safely divide one number from another
sub Function to safely subtract one number from another
add Function to safely add two numbers

16.7.1 mul

Function Name: mul
Description: Function to safely multiply two numbers
Function Type: Pure
Function Visibility: Internal
Function Modifiers: None
Return Type: uin256
Return Details: Returns the result of the multiplication

Code

The code for the mul function is as follows:

Listing 1: mul 1.4.0 Code

function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {

return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;

}

110 Chapter 16. SafeMath

Tru Reputation Token Documentation, Release 0.1.9

The mul function performs the following:

• if the a argument is zero, if it is returns zero

• Multiply a argument by b argument

• Checks that the result divided by a argument equals the b argument. If not, it will throw

• Return the result

Usage

The mul function has the following usage syntax:

Listing 2: mul Usage Example

mul(2,2);

16.7.2 div

Function Name: div
Description: Function to safely divide one number from another
Function Type: Pure
Function Visibility: Internal
Function Modifiers: None
Return Type: uin256
Return Details: Returns the result of the division

Code

The code for the div function is as follows:

Listing 3: div 1.4.0 Code

function div(uint256 a, uint256 b) internal pure returns (uint256) {

uint256 c = a / b;

return c;
}

The div function performs the following:

• Divide a argument by b argument

• Return the result

Usage

The div function has the following usage syntax:

16.7. 7. Functions 111

Tru Reputation Token Documentation, Release 0.1.9

Listing 4: div Usage Example

div(2,2);

16.7.3 sub

Function Name: sub
Description: Function to safely subtract one number from another
Function Type: Pure
Function Visibility: Internal
Function Modifiers: None
Return Type: uin256
Return Details: Returns the result of the subtraction

Code

The code for the sub function is as follows:

Listing 5: sub 1.4.0 Code

function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;

}

The sub function performs the following:

• Checks the b argument is equal to or less than the a argument. If not, it will throw

• Calculate and result the a argument minus the b argument

Usage

The sub function has the following usage syntax:

Listing 6: sub Usage Example

sub(2,1);

16.7.4 add

Function Name: add
Description: Function to safely add two numbers
Function Type: Pure
Function Visibility: Internal
Function Modifiers: None
Return Type: uin256
Return Details: Returns the result of the addition

112 Chapter 16. SafeMath

Tru Reputation Token Documentation, Release 0.1.9

Code

The code for the add function is as follows:

Listing 7: add 1.4.0 Code

function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;

}

The add function performs the following:

• Adds a argument to b argument

• Checks that the result is greater than the a argument. If not, it will throw.

• Returns the result

Usage

The add function has the following usage syntax:

Listing 8: add Usage Example

add(2,2);

16.7. 7. Functions 113

Tru Reputation Token Documentation, Release 0.1.9

114 Chapter 16. SafeMath

CHAPTER 17

StandardToken

Title: StandardToken
Description: Zeppelin Solidity Smart Contract that provides a standard ERC-20 compliant token.
Author: Smart Contract Solutions, Inc.
Solidity Version: ^0.4.18
Relative Path: ./contracts/supporting/StandardToken.sol
License: MIT License
Current Version: 1.4.0
Original Source: StandardToken Source

17.1 1. Imports & Dependencies

The following imports and dependencies exist for the StandardToken Smart Contract:

Name Description
Basic-
Token

Zeppelin Solidity Smart Contract that implements a Basic form of the ERC-20 standard without al-
lowances, approvals, or transferFrom

ERC20 Zeppelin Solidity Smart Contract that provides the interface required to implement an ERC20 compliant
token.

17.2 2. Variables

There are no variables for the StandardToken Smart Contract.

115

https://github.com/OpenZeppelin/zeppelin-solidity
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/master/LICENSE
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/v1.4.0/contracts/token/StandardToken.sol
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

17.3 3. Enums

There are no enums for the StandardToken Smart Contract.

17.4 4. Events

TThere are no events for the StandardToken Smart Contract.

17.5 5. Mappings

The following mappings exist for the StandardToken Smart Contract:

Name Mapping Type Description
allowed address => mapping(address => uint256) Mapping to allowance authorisation

17.6 6. Modifiers

There are no modifiers for the StandardToken Smart Contract.

17.7 7. Functions

The following functions exist for the StandardToken Smart Contract:

Name Description
transferFrom Function transfer tokens from an address to another invoked by an authorised spender address
approve Function to approve a particular allowance to be transferred by that spender address on the

target address
allowance Function to get the approved allowance for a transfer of tokens from an address by a spender

address
increaseAp-
proval

Function to allow increase approved allowance for a spender on a given address

decreaseAp-
proval

Function to allow decrease approved allowance for a spender on a given address

116 Chapter 17. StandardToken

Tru Reputation Token Documentation, Release 0.1.9

17.7.1 transferFrom

Function Name: transferFrom
Description: Function transfer tokens from an address to another invoked by an authorised spender ad-

dress
Function Type: N/A
Function Visibility: Public
Function Modi-
fiers:

N/A

Return Type: bool
Return Details: returns where the transfer was successful or not

Code

The code for the transferFrom function is as follows:

Listing 1: transferFrom 1.4.0 Code

function transferFrom(address _from, address _to, uint256 _value) public returns
→˓(bool) {

require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);

balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
Transfer(_from, _to, _value);
return true;

}

The transferFrom function performs the following:

• Checks the _to argument is a valid Ethereum address. If not, it will throw.

• Checks that the _value argument is less than or equal to the _from token balance. If not, it will throw

• Checks that _value argument is less than or equal to the allowed balance for the msg.sender. If not it will throw.

• Removes the _value from the _from token balance. If the balance is insufficient, it will throw

• Adds the _value to the _to token balance.

• Removes the _value from the allowance for this spender on this address.

• Fires the Transfer event

• Returns true

Usage

The transferFrom function has the following usage syntax and arguments:

Argument Type Details
1 _from address Address transfer tokens from
2 _to address Address transfer tokens to
3 _value uint256 Number of tokens to transfer

17.7. 7. Functions 117

Tru Reputation Token Documentation, Release 0.1.9

Listing 2: transferFrom Usage Example

transferFrom(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x543456789abcdefghijklmnopqrstuvwxyz12234,
100);

17.7.2 approve

Function Name: approve
Description: Function to approve a particular allowance to be transferred by that spender address on the

target address
Function Type: N/A
Function Visibil-
ity:

Public

Function Modi-
fiers:

N/A

Return Type: bool
Return Details: Returns where the approval was successful or not

Code

The code for the approve function is as follows:

Listing 3: approve 1.4.0 Code

function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;

}

The approve function performs the following:

• Sets the allowance for the _spender on the msg.sender address to the _value

• Fires the Approval event

• Returns true

Usage

The approve function has the following usage syntax and arguments:

Argument Type Details
1 _spender address Address to grant approval to
2 _to address Allowance ot grant spender

Listing 4: approve Usage Example

approve(0x123456789abcdefghijklmnopqrstuvwxyz98765,100);

118 Chapter 17. StandardToken

Tru Reputation Token Documentation, Release 0.1.9

17.7.3 allowance

Function Name: allowance
Description: Function to approve a particular allowance to be transferred by that spender address on the

target address
Function Type: View
Function Visibil-
ity:

Public

Function Modi-
fiers:

N/A

Return Type: uint256
Return Details: Returns the Current balance of approved tokens an address can transfer

Code

The code for the allowance function is as follows:

Listing 5: allowance 1.4.0 Code

function allowance(address _owner, address _spender) public view returns (uint256) {
return allowed[_owner][_spender];

}

The allowance function performs the following:

• Returns true

Usage

The allowance function has the following usage syntax and arguments:

Argument Type Details
1 _owner address Address subject to allowance
2 _spender address Address granted an allowance

17.7. 7. Functions 119

Tru Reputation Token Documentation, Release 0.1.9

Listing 6: allowance Usage Example

allowance(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x543456789abcdefghijklmnopqrstuvwxyz12234);

17.7.4 increaseApproval

Function Name: increaseApproval
Description: Function to increase the existing approved allowance of a spender address on the target

address
Function Type: N/A
Function Visibil-
ity:

Public

Function Modi-
fiers:

N/A

Return Type: bool
Return Details: Current balance of approved tokens an address can transfer

Code

The code for the increaseApproval function is as follows:

Listing 7: increaseApproval 1.4.0 Code

function increaseApproval(address _spender, uint _addedValue) public returns (bool) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;

}

The increaseApproval function performs the following:

• Adds the _addedValue argument to the current allowance

• Fires the Approval event

• Returns true

Usage

The increaseApproval function has the following usage syntax and arguments:

Argument Type Details
1 _spender address Address to increase the allowance for
2 _addedValue address Amount to add to the allowance

Listing 8: increaseApproval Usage Example

increaseApproval(0x123456789abcdefghijklmnopqrstuvwxyz98765,
100);

120 Chapter 17. StandardToken

Tru Reputation Token Documentation, Release 0.1.9

17.7.5 decreaseApproval

Function Name: decreaseApproval
Description: Function to increase the existing approved allowance of a spender address on the target

address
Function Type: N/A
Function Visibil-
ity:

Public

Function Modi-
fiers:

N/A

Return Type: bool
Return Details: Current balance of approved tokens an address can transfer

Code

The code for the increaseApproval function is as follows:

Listing 9: decreaseApproval 1.4.0 Code

function decreaseApproval(address _spender, uint _subtractedValue) public returns
→˓(bool) {

uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {

allowed[msg.sender][_spender] = 0;
} else {

allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;

}

The decreaseApproval function performs the following:

• Calculates the current approved allowance

• If the current value is less than the _subtractedValue argument, the allowance is set to zero

• Otherwise it removes the _subtractedValue argument from the allowance

• Fires the Approval event

• Returns true

Usage

The decreaseApproval function has the following usage syntax and arguments:

Argument Type Details
1 _spender address Address to decrease the allowance for
2 _subtractedValue address Amount to remove from the allowance

17.7. 7. Functions 121

Tru Reputation Token Documentation, Release 0.1.9

Listing 10: decreaseApproval Usage Example

decreaseApproval(0x123456789abcdefghijklmnopqrstuvwxyz98765,
100);

122 Chapter 17. StandardToken

CHAPTER 18

TruAddress

Title: TruAddress
Description: Library of helper functions surrounding the Solidity Address type
Author: Ian Bray, Tru Ltd
Solidity Version: 0.4.18
Relative Path: ./contracts/supporting/TruAddress.sol
License: Apache 2 License
Current Version: 0.1.9

18.1 1. Imports & Dependencies

The following imports and dependencies exist for the TruAddress Solidity Library:

Name Description
SafeMath Zeppelin Solidity Library to perform mathematics safely inside Solidity

18.2 2. Variables

There are no variables for the TruAddress Solidity Library.

18.3 3. Enums

There are no enums for the TruAddress Solidity Library.

123

https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE
https://github.com/OpenZeppelin/zeppelin-solidity

Tru Reputation Token Documentation, Release 0.1.9

18.4 4. Events

There are no events for the TruAddress Solidity Library.

18.5 5. Mappings

There are no mappings for the TruAddress Solidity Library.

18.6 6. Modifiers

There are no modifiers for the TruAddress Solidity Library.

18.7 7. Functions

The following functions exist for the TruAddress Solidity Library:

Name Description
isValid Function to validate a supplied ethereum address
toString Function to convert an Address to a String
addressLength Function to return the length of a given Address

18.7.1 isValid

Function Name: isValid
Description: Function to validate a supplied address is the correct length & format
Function Type: Pure
Function Visibility: Public
Function Modifiers: N/A
Return Type: Bool
Return Details: Returns true for valid input address; false for invalid input address

Code

The code for the isValid is as follows:

Listing 1: isValid Code

function isValid(address input) public pure returns (bool) {
uint addrLength = addressLength(input);
return ((addrLength == 20) && (input != address(0)));

}

The isValid function performs the following:

• Retrieves the address length

• returns a bool check that the address is both 20 characters long and not an empty address

124 Chapter 18. TruAddress

Tru Reputation Token Documentation, Release 0.1.9

Usage

The isValid function has the following usage syntax and arguments:

Argument Type Details
1 input address Address to be validated

Listing 2: isValid Usage Example

isValid(0x123456789abcdefghijklmnopqrstuvwxyz98765);

18.7.2 toString

Function Name: toString
Description: Function to convert an address to a string
Function Type: Pure
Function Visibility: Internal
Function Modifiers: N/A
Return Type: String
Return Details: Returns the address in string format

Code

The code for the toString is as follows:

Listing 3: toString Code

function toString(address input) internal pure returns (string) {
bytes memory byteArray = new bytes(20);
for (uint i = 0; i < 20; i++) {

byteArray[i] = byte(uint8(uint(input) / (2**(8*(19 - i)))));
}
return string(byteArray);

}

The toString function performs the following:

• Creates a 20 byte array

• iterates through the address and converts each byte

• returns the byteArray as a string

Usage

The toString function has the following usage syntax and arguments:

Argument Type Details
1 input address Address to be converted to a string

18.7. 7. Functions 125

Tru Reputation Token Documentation, Release 0.1.9

Listing 4: toString Usage Example

toString(0x123456789abcdefghijklmnopqrstuvwxyz98765);

18.7.3 addressLength

Function Name: addressLength
Description: Function to return the length of an address
Function Type: Pure
Function Visibility: Internal
Function Modifiers: N/A
Return Type: String
Return Details: Returns the length of the supplied address

Code

The code for the addressLength is as follows:

Listing 5: addressLength Code

function addressLength(address input) internal pure returns (uint) {
string memory addressStr = toString(input);
return bytes(addressStr).length;

}

The addressLength function performs the following:

• Converts the supplied address to a string

• returns the byte length of the string

Usage

The addressLength function has the following usage syntax and arguments:

Argument Type Details
1 input address Address to calculate the length of

Listing 6: addressLength Usage Example

addressLength(0x123456789abcdefghijklmnopqrstuvwxyz98765);

126 Chapter 18. TruAddress

CHAPTER 19

TruMintableToken

Title: TruMintableToken
Description: Smart Contract derived from MintableToken by Zeppelin Solidity with additional functionality

for the TruReputationToken.
Author: Ian Bray, Tru Ltd; derived from MintableToken
Solidity Ver-
sion:

^0.4.18

Relative
Path:

./contracts/supporting/TruMintableToken.sol

License: Apache 2 License
Current Ver-
sion:

0.1.9

Original
Source:

MintableToken

19.1 1. Imports & Dependencies

The following imports and dependencies exist for the TruMintableToken Smart Contract:

Name Description
SafeMath Zeppelin Solidity Library to perform mathematics safely inside Solidity
TruAddress Solidity Library of helper functions surrounding the Address type in Solidity.
ReleaseableToken Token Market Contract that allows control over when a Token can be released.

19.2 2. Variables

The following variables exist for the TruMintableToken Smart Contract:

127

https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/v1.4.0/contracts/token/MintableToken.sol
https://github.com/OpenZeppelin/zeppelin-solidity
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/v1.4.0/contracts/token/MintableToken.sol
https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE
https://raw.githubusercontent.com/OpenZeppelin/zeppelin-solidity/v1.4.0/contracts/token/MintableToken.sol
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/TokenMarketNet/ico/

Tru Reputation Token Documentation, Release 0.1.9

Variable Type Vis Details
mintingFinished bool public Variable to mark if minting is finished for this token

Default: false
preSaleComplete bool public Variable to mark if the Pre-Sale is complete for this

Default: false
saleComplete bool public Variable to mark if the CrowdSale is complete for this

Default: false

19.3 3. Enums

There are no enums for the TruMintableToken Smart Contract.

19.4 4. Events

The following events for the TruMintableToken Smart Contract:

Name Description
Minted Event to track when tokens are minted
MintFinished Event to notify when minting is finalised and finished
PreSaleComplete Event to notify when a Pre-Sale is complete
SaleComplete Event to notify when a CrowdSale is complete

19.4.1 Minted

Event Name: Minted
Description: Event to track when tokens are minted

Usage

The Minted event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 _to address Yes Address tokens have been minted to
2 _amount uint256 No Amount of tokens minted

Listing 1: Minted Usage Example

Minted(0x123456789abcdefghijklmnopqrstuvwxyz98765, 100);

19.4.2 MintFinished

Event Name: MintFinished
Description: Event to notify when minting is finalised and finished

128 Chapter 19. TruMintableToken

Tru Reputation Token Documentation, Release 0.1.9

Usage

The MintFinished event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 _executor address Yes Address that executed the MintFinished event

Listing 2: MintFinished Usage Example

MintFinished(0x123456789abcdefghijklmnopqrstuvwxyz98765);

19.4.3 PreSaleComplete

Event Name: PreSaleComplete
Description: Event to notify when a Pre-Sale is complete

Usage

The PreSaleComplete event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 _executor address Yes Address that executed the PreSaleComplete event

Listing 3: PreSaleComplete Usage Example

PreSaleComplete(0x123456789abcdefghijklmnopqrstuvwxyz98765);

19.4.4 SaleComplete

Event Name: SaleComplete
Description: Event to notify when a CrowdSale is complete

Usage

The SaleComplete event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 _executor address Yes Address that executed the SaleComplete event

Listing 4: SaleComplete Usage Example

SaleComplete(0x123456789abcdefghijklmnopqrstuvwxyz98765);

19.4. 4. Events 129

Tru Reputation Token Documentation, Release 0.1.9

19.5 5. Mappings

There are no mappings for the TruMintableToken Smart Contract.

19.6 6. Modifiers

The following modifiers exist for the TruMintableToken Smart Contract:

Name Description
canMint Modifier to check the Token can mint

19.6.1 canMint

Modifier Name: canMint
Description: Modifier to check if minting has finished for this token or not

Code

The code for the canMint modifier is as follows:

Listing 5: canMint Code

modifier canMint() {
require(!mintingFinished);
_;

}

The canMint function performs the following:

• Checks that the mintingFinished variable is false otherwise it throws

19.7 7. Functions

The following functions exist for the TruMintableToken Smart Contract:

Name Description
mint Function to mint tokens
finishMinting Function to stop minting new tokens.

130 Chapter 19. TruMintableToken

Tru Reputation Token Documentation, Release 0.1.9

19.7.1 mint

Function Name: mint
Description: Function to mint tokens
Function Type: Pure
Function Visibility: Public
Function Modifiers: onlyOwner, canMint
Return Type: Bool
Return Details: Returns whether mint completed successfully

Code

The code for the mint function is as follows:

Listing 6: mint Code

function mint(address _to, uint256 _amount) public onlyOwner canMint returns (bool) {
require(_amount > 0);
require(TruAddress.isValid(_to) == true);

totalSupply = totalSupply.add(_amount);
balances[_to] = balances[_to].add(_amount);
Minted(_to, _amount);
Transfer(0x0, _to, _amount);
return true;

}

The mint function performs the following:

• Checks the supplied _amount is greater than 0

• Checks the supplied _to address is valid

• Adds the newly minted amount to the totalSupply of tokens

• Transfers the newly minted tokens to the recipient

• Fires the Minted event

• Fires the Transfer event

• returns true

Usage

The mint function has the following usage syntax and arguments:

Argument Type Details
1 _to address | Address to mint tokens to
2 _amount uint256 | Amount of tokens to mint

Listing 7: mint Usage Example

mint(0x123456789abcdefghijklmnopqrstuvwxyz98765);

19.7. 7. Functions 131

Tru Reputation Token Documentation, Release 0.1.9

19.7.2 finishMinting

Function Name: finishMinting
Description: Function to mint tokens
Function Type: Pure
Function Visibility: Public
Function Modifiers: onlyOwner, canMint
Return Type: Bool
Return Details: Returns whether mint completed successfully

Code

The code for the finishMinting function is as follows:

Listing 8: finishMinting Code

function finishMinting(bool _presale, bool _sale) public onlyOwner returns (bool) {
require(_sale != _presale);

if (_presale == true) {
preSaleComplete = true;
PreSaleComplete();
return true;

}

require(preSaleComplete == true);
saleComplete = true;
SaleComplete();
mintingFinished = true;
MintFinished();
return true;

}

The finishMinting function performs the following:

• Ensures that the _presale and _sale argument do not match (one must be true, the other false)

• If _presale argument is true, change the preSaleComplete variable to true, fire the PreSaleComplete event and
return true

• If _sale argument is true, change the saleComplete variable to true, fire the SaleComplete event, set the mint-
ingFinished variable to true, fire the MintFinished event and return true

Usage

The finishMinting function has the following usage syntax and arguments:

Argument Type Details
1 _presale bool Whether this call is from the Pre-Sale or not
2 _sale bool Whether this call is from the CrowdSale or not

132 Chapter 19. TruMintableToken

Tru Reputation Token Documentation, Release 0.1.9

Listing 9: finishMinting Usage Example

finishMinting(true, false);

19.7. 7. Functions 133

Tru Reputation Token Documentation, Release 0.1.9

134 Chapter 19. TruMintableToken

CHAPTER 20

TruUpgradeableToken

Title: TruUpgradeableToken
Description: Smart Contract derived from UpgradeableToken by Token Market with additional functionality

for the TruReputationToken.
Author: Ian Bray, Tru Ltd
Solidity Ver-
sion:

0.4.18

Relative
Path:

./contracts/supporting/TruUpgradeableToken.sol

License: Apache 2 License
Current Ver-
sion:

0.1.9

Original
Source:

UpgradeableToken

20.1 1. Imports & Dependencies

The following imports and dependencies exist for the TruUpgradeableToken Solidity Library:

Name Description
SafeMath Zeppelin Solidity Library to perform mathematics safely inside Solidity
StandardToken Zeppelin Solidity Smart Contract for a Standard ERC-20 Token
TruUpgradeableToken Library of helper functions surrounding the Solidity Address type
UpgradeAgent Token Market Smart Contract used to facilitate upgrading of tokens

20.2 2. Variables

The following variables exist for the TruUpgradeableToken Smart Contract:

135

https://raw.githubusercontent.com/TokenMarketNet/ico/master/contracts/UpgradeableToken.sol
https://github.com/TokenMarketNet/ico/
https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE
https://raw.githubusercontent.com/TokenMarketNet/ico/master/contracts/UpgradeableToken.sol
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/TokenMarketNet/ico/

Tru Reputation Token Documentation, Release 0.1.9

Variable Type Vis Details
upgradeMas-
ter

address pub-
lic

Variable containing the address of the wallet designated as the Upgrade
Master

up-
gradeAgent

Up-
gradeAgent

pub-
lic

Variable containing the UpgradeAgent Contract Instance

totalUp-
graded

uint256 pub-
lic

Variable to track the number of tokens that have been upgraded

20.3 3. Enums

The following enums exist for the TruUpgradeableToken Solidity Library:

Enum Description
UpgradeState Enum of the different states an UpgradeableToken can be in.

20.3.1 UpgradeState

The following enum states exist for the UpgradeState enum:

Enum States Detail
Unknown Token upgrade is in an Unknown State- fallback state not used
NotAllowed The child contract has not reached a condition where the upgrade can begin
WaitingForAgent Token allows upgrade, but an upgradeAgent has not been set
ReadyToUpgrade The upgradeAgent is set, but no tokens have been upgraded yet
Upgrading The upgradeAgent is set, and balance holders can upgrade their tokens

20.4 4. Events

The following events exist for the TruUpgradeableToken Solidity Library:

Name Description
Upgrade Event to notify when a token holder upgrades their tokens
UpgradeAgentSet Event to notify when an upgradeAgent is set
NewUpgradedAmount Event to notify the new total number of tokens that have been upgraded

20.4.1 Upgrade

Event Name: Upgrade
Description: Event to notify when a token holder upgrades their tokens

Usage

The Upgrade event has the following usage syntax and arguments:

136 Chapter 20. TruUpgradeableToken

Tru Reputation Token Documentation, Release 0.1.9

Argu-
ment

Type In-
dexed?

Details

1 from ad-
dress

Yes Source wallet that the older tokens are sent from

2 to ad-
dress

Yes Address of the destination for upgraded tokens which is hardcoded to the up-
gradeAgent who sends them back to the originating address

3 up-
grade-
Value

uint256No Number of tokens to upgrade

Listing 1: Upgrade Usage Example

Upgrade(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x123456789abcdefghijklmnopqrstuvwxyz01234,
100);

20.4.2 UpgradeAgentSet

Event Name: UpgradeAgentSet
Description: Event to notify when an upgradeAgent is set

Usage

The UpgradeAgentSet event has the following usage syntax and arguments:

Argument Type Indexed? Details
1 agent address Yes Address of new upgradeAgent
2 executor address Yes Address that executed the UpgradeAgentSet event

Listing 2: UpgradeAgentSet Usage Example

UpgradeAgentSet(0x123456789abcdefghijklmnopqrstuvwxyz98765,
0x123456789abcdefghijklmnopqrstuvwxyz01234);

20.4.3 NewUpgradedAmount

Event Name: NewUpgradedAmount
Description: Event to notify when an upgradeAgent is set

Usage

The NewUpgradedAmount event has the following usage syntax and arguments:

20.4. 4. Events 137

Tru Reputation Token Documentation, Release 0.1.9

Argument Type Indexed? Details
1 originalBalance uint256 No Balance of Upgrade Tokens before
2 newBalance uint256 No Balance of Upgrade Tokens after
3 executor address Yes Address that executed the NewUpgradedAmount event

Listing 3: NewUpgradedAmount Usage Example

NewUpgradedAmount(50, 100);

20.5 5. Mappings

There are no mappings for the TruUpgradeableToken Smart Contract.

20.6 6. Modifiers

The following modifiers exist for the TruUpgradeableToken Smart Contract:

Name Description
onlyUpgradeMaster Modifier to check the Upgrade Master is executing this call

20.6.1 onlyUpgradeMaster

Modifier Name: onlyUpgradeMaster
Description: Modifier to check the Upgrade Master is executing this call

Code

The code for the onlyUpgradeMaster modifier is as follows:

Listing 4: onlyUpgradeMaster Code

modifier onlyUpgradeMaster() {
require(msg.sender == upgradeMaster);
_;

}

The onlyUpgradeMaster function performs the following:

• Checks that the msg.sender matches the upgradeMaster variable

20.7 7. Functions

The following functions exist for the TruUpgradeableToken Smart Contract:

138 Chapter 20. TruUpgradeableToken

Tru Reputation Token Documentation, Release 0.1.9

Name Description
TruUpgradeableToken Constructor Constructor for the TruUpgradeableToken Smart Contract
upgrade Function to upgrade tokens.
setUpgradeAgent Function to set the upgradeAgent variable
getUpgradeState Function to get the current UpgradeState for the token
setUpgradeMaster Function to change the upgradeMaster variable
canUpgrade Function to get whether the token can be upgraded

20.7.1 TruUpgradeableToken Constructor

Function Name: TruUpgradeableToken
Description: Constructor for the TruUpgradeableToken Smart Contract
Function Type: Constructor
Function Visibility: Public
Function Modifiers: N/A
Return Type: None
Return Details: N/A

Code

The code for the TruUpgradeableToken Constructor function is as follows:

Listing 5: TruUpgradeableToken Constructor Code

function TruUpgradeableToken(address _upgradeMaster) public {
require(TruAddress.isValid(_upgradeMaster) == true);
upgradeMaster = _upgradeMaster;

}

The TruUpgradeableToken Constructor function performs the following:

• Checks the _upgradeMaster is a valid Ethereum address.

• Sets the upgradeMaster variable to the _upgradeMaster argument value.

Usage

The TruUpgradeableToken Constructor function has the following usage syntax and arguments:

Argument Type Details
1 _upgradeMaster address | Address to be set as the Upgrade Master

20.7. 7. Functions 139

Tru Reputation Token Documentation, Release 0.1.9

Listing 6: TruUpgradeableToken Constructor Usage Example

TruUpgradeableToken(0x123456789abcdefghijklmnopqrstuvwxyz98765);

20.7.2 upgrade

Function Name: upgrade
Description: Function to upgrade tokens
Function Type: N/A
Function Visibility: Public
Function Modifiers: N/A
Return Type: None
Return Details: N/A

Code

The code for the upgrade function is as follows:

Listing 7: upgrade Code

function upgrade(uint256 value) public {
UpgradeState state = getUpgradeState();
require((state == UpgradeState.ReadyToUpgrade) || (state == UpgradeState.

→˓Upgrading));
require(value > 0);
require(balances[msg.sender] >= value);

uint256 upgradedAmount = totalUpgraded.add(value);
assert(upgradedAmount >= value);

uint256 senderBalance = balances[msg.sender];
uint256 newSenderBalance = senderBalance.sub(value);
uint256 newTotalSupply = totalSupply.sub(value);
balances[msg.sender] = newSenderBalance;
totalSupply = newTotalSupply;
NewUpgradedAmount(totalUpgraded, newTotalSupply);
totalUpgraded = upgradedAmount;
// Upgrade agent reissues the tokens
upgradeAgent.upgradeFrom(msg.sender, value);
Upgrade(msg.sender, upgradeAgent, value);

}

The upgrade function performs the following:

• Checks the UpgradeState is either ReadyToUpgrade or Upgrading

• Checks the upgrade amount value is greater than zero

• Checks that the send has a balance of greater than or equal to the upgrade value

• Adds the value to the totalUpgraded variable and checks that this new value is equal to or greater than the value
to be upgraded.

• Removes the value from the senders balance

140 Chapter 20. TruUpgradeableToken

Tru Reputation Token Documentation, Release 0.1.9

• Removes the value from the token’s totalSupply

• Fires the NewUpgradedAmount event

• Initiates the Upgrade Agent’s upgradeFrom functionality to deliver the value in upgraded tokens to the sender.

• Fires the Upgrade event

Usage

The upgrade function has the following usage syntax and arguments:

Argument Type Details
1 _value uint256 | Amount of tokens to be upgraded

Listing 8: upgrade Usage Example

upgrade(100);

20.7.3 setUpgradeAgent

Function Name: setUpgradeAgent
Description: Function to set the upgradeAgent variable
Function Type: N/A
Function Visibility: Public
Function Modifiers: onlyUpgradeMaster
Return Type: None
Return Details: N/A

Code

The code for the setUpgradeAgent function is as follows:

Listing 9: setUpgradeAgent Code

function setUpgradeAgent(address _agent) public onlyUpgradeMaster {
require(TruAddress.isValid(_agent) == true);
require(canUpgrade());
require(getUpgradeState() != UpgradeState.Upgrading);

UpgradeAgent newUAgent = UpgradeAgent(_agent);

require(newUAgent.isUpgradeAgent());
require(newUAgent.originalSupply() == totalSupply);

UpgradeAgentSet(upgradeAgent);

upgradeAgent = newUAgent;
}

The setUpgradeAgent function performs the following:

• Checks the _agent address is valid. If not, the function will throw.

20.7. 7. Functions 141

Tru Reputation Token Documentation, Release 0.1.9

• Checks that the token can upgrade via the canUpgrade function. If not, the function will throw.

• Checks that that UpgradeState is not Upgrading (and therefore in the middle of an upgrade). If not, the function
will throw.

• Checks that the specified Upgrade Agent contract is an Upgrade Agent. If not, the function will throw.

• Checks that the Upgrade Agent’s original supply matches the current total supply of the token. If not, the
function will throw.

• Fires the UpgradeAgentSet event.

• Sets the upgradeAgent variable.

Usage

The setUpgradeAgent function has the following usage syntax and arguments:

Argument Type Details
1 _agent address | Address of the new Upgrade Agent

Listing 10: setUpgradeAgent Usage Example

setUpgradeAgent(0x123456789abcdefghijklmnopqrstuvwxyz98765);

20.7.4 getUpgradeState

Function Name: getUpgradeState
Description: Function to get the current UpgradeState of the token
Function Type: Constant
Function Visibility: Public
Function Modifiers: N/A
Return Type: UpgradeState
Return Details: Returns UpgradeState as a uint (0, 1, 2, 3 or 4)

Code

The code for the getUpgradeState function is as follows:

Listing 11: getUpgradeState Code

function getUpgradeState() public constant returns(UpgradeState) {
if (!canUpgrade())

return UpgradeState.NotAllowed;
else if (TruAddress.isValid(upgradeAgent) == false)

return UpgradeState.WaitingForAgent;
else if (totalUpgraded == 0)

return UpgradeState.ReadyToUpgrade;
else

return UpgradeState.Upgrading;
}

The getUpgradeState function performs the following:

142 Chapter 20. TruUpgradeableToken

Tru Reputation Token Documentation, Release 0.1.9

• the canUpgrade function to see if it is true. If it is false, returns NotAllowed UpgradeState

• Checks the upgradeAgent address is valid and set. If it is not, returns WaitingForAgent UpgradeState

• Checks that the totalUpgraded* is zero. If it is true, return ReadyToUpgrade UpgradeState

• Else return Upgrading UpgradeState

Usage

The getUpgradeState function has the following usage syntax:

Listing 12: getUpgradeState Usage Example

getUpgradeState();

20.7.5 setUpgradeMaster

Function Name: setUpgradeMaster
Description: Function to change the upgradeMaster variable
Function Type: N/A
Function Visibility: Public
Function Modifiers: onlyUpgradeMaster
Return Type: UpgradeState
Return Details: Returns UpgradeState as a uint (0, 1, 2, 3 or 4)

Code

The code for the setUpgradeMaster function is as follows:

Listing 13: setUpgradeMaster Code

function setUpgradeMaster(address _master) public onlyUpgradeMaster {
require(TruAddress.isValid(_master) == true);
upgradeMaster = _master;

}

The setUpgradeMaster function performs the following:

• Checks the _master argument is a valid Ethereum Address. If it is not, it will throw.

• Sets the upgradeMaster variable to the _master argument.

Usage

The setUpgradeMaster function has the following usage syntax and arguments:

Argument Type Details
1 _master address | Address of the new Upgrade Master

20.7. 7. Functions 143

Tru Reputation Token Documentation, Release 0.1.9

Listing 14: setUpgradeAgent Usage Example

setUpgradeMaster(0x123456789abcdefghijklmnopqrstuvwxyz98765);

20.7.6 canUpgrade

Function Name: canUpgrade
Description: Function to get whether the token can be upgraded or not
Function Type: Constant
Function Visibility: Public
Function Modifiers: N/A
Return Type: bool
Return Details: Returns true as a default; customised in child contracts to fit required conditions

Code

The code for the canUpgrade function is as follows:

Listing 15: canUpgrade Code

function canUpgrade() public constant returns(bool) {
return true;

}

The canUpgrade function performs the following:

• returns true. This functionality is overridden in child contracts to provide conditionality for this result.

Usage

The canUpgrade function has the following usage syntax:

Listing 16: getUpgradeState Usage Example

canUpgrade();

144 Chapter 20. TruUpgradeableToken

CHAPTER 21

UpgradeAgent

Title: UpgradeAgent
Description: Contract interface derived from UpgradeAgent by Token Market
Author: TokenMarket Ltd/Updated by Ian Bray, Tru Ltd
Solidity Version: ^0.4.18
Relative Path: ./contracts/supporting/UpgradeAgent.sol
License: Apache 2 License
Current Version: 0.1.9
Original Source: UpgradeAgent Source

21.1 1. Imports & Dependencies

There are no imports or dependencies for the UpgradeAgent Smart Contract.

21.2 2. Variables

The following variables exist for the UpgradeAgent Smart Contract:

Variable Type Vis Details
originalSupply uint256 public Variable containing the original token count of the the pre-upgrade token

21.3 3. Enums

There are no enums for the UpgradeAgent Smart Contract.

145

https://github.com/TokenMarketNet/ico/
https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE
https://raw.githubusercontent.com/TokenMarketNet/ico/master/contracts/UpgradeAgent.sol

Tru Reputation Token Documentation, Release 0.1.9

21.4 4. Events

There are no events for the UpgradeAgent Smart Contract.

21.5 5. Mappings

The are no mappings for the UpgradeAgent Smart Contract.

21.6 6. Modifiers

There are no modifiers for the UpgradeAgent Smart Contract.

21.7 7. Functions

The following functions exist for the UpgradeAgent Smart Contract:

Name Description
isUpgradeAgent Interface function for checking if an UpgradeAgent
upgradeFrom Interface function for upgrading tokens

21.7.1 isUpgradeAgent

Function Name: isUpgradeAgent
Description: Interface function for checking if an UpgradeAgent
Function Type: Pure
Function Visibility: Public
Function Modifiers: N/A
Return Type: bool
Return Details: returns whether an UpgradeAgent or not

Code

The code for the isUpgradeAgent function is an interface and it is defined as follows:

Listing 1: isUpgradeAgent Code

function isUpgradeAgent() public pure returns (bool) {
return true;

}

Usage

The isUpgradeAgent function has the following usage syntax:

146 Chapter 21. UpgradeAgent

Tru Reputation Token Documentation, Release 0.1.9

Listing 2: isUpgradeAgent Usage Example

isUpgradeAgent();

21.7.2 upgradeFrom

Function Name: upgradeFrom
Description: Interface function to upgrade from one token to another
Function Type: Pure
Function Visibility: Public
Function Modifiers: N/A
Return Type: bool
Return Details: returns whether an UpgradeAgent or not

Code

The code for the upgradeFrom function is an interface and it is defined as follows:

Listing 3: isUpgradeAgent Code

function isUpgradeAgent() public pure returns (bool) {
return true;

}

Usage

The upgradeFrom function has the following usage syntax and arguments:

Argument Type Details
1 _from address Address to transfer upgrade tokens from
2 _value uint256 Amount of tokens to upgrade

Listing 4: upgradeFrom Usage Example

upgradeFrom(0x123456789abcdefghijklmnopqrstuvwxyz98765, 100);

21.7. 7. Functions 147

Tru Reputation Token Documentation, Release 0.1.9

148 Chapter 21. UpgradeAgent

CHAPTER 22

Acknowledgments

Tru Ltd would like the make the following acknowledgments:

22.1 Open Zepplin

The Tru Reputation Token Project makes extensive use and has been inspired by the Zeppelin Solidity by Open
Zeppelin. Specifically the following Smart Contracts and Libraries are used by the Tru Reputation Token:

Name Modified?
BasicToken.sol No
ERC20.sol No
ERC20Basic.sol No
MintableToken.sol Yes
Ownable.sol No
SafeMath.sol No
StandardToken.sol No

To ensure security, and as part of good community practice, the coverage testing in this Repository covers all non-
trivial libraries consumed from the Zeppelin Solidity framework, and will feedback any issues encountered with the
framework during any and all testing.

All Open Zeppelin Smart Contracts, libraries and supporting functionality used within this work are licensed under
the MIT License.

22.2 TokenMarket

All TokenMarket Smart Contracts, libraries and supporting functionality used within this work are licensed under the
Apache 2.0 License. The following items are covered by these terms:

149

https://tru.ltd
https://github.com/TruLtd/tru-reputation-token
https://github.com/OpenZeppelin/zeppelin-solidity
https://openzeppelin.org/
https://openzeppelin.org/
https://github.com/TruLtd/tru-reputation-token
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/LICENSE
https://github.com/TokenMarketNet/ico/blob/master/LICENSE.txt

Tru Reputation Token Documentation, Release 0.1.9

Name Modified?
Haltable.sol Yes
ReleasableToken.sol Yes
UpgradeableToken.sol Yes
UpgradeAgent.sol Yes

The original unmodified source files are under copyright of TokenMarket Ltd and can be obtained in the TokenMarket
ICO Github Repository

150 Chapter 22. Acknowledgments

https://github.com/TokenMarketNet/ico
https://github.com/TokenMarketNet/ico

CHAPTER 23

Useful Links

23.1 Solidity Links

We at Tru Ltd have found the following links and resources insightful and useful during the development of this project
and hope you also find utility from them:

• Solidity Documentation

• Github Solidity Repo

• Zeppelin-Solidity Documentation

• Truffle Framework Documentation

151

https://tru.ltd
https://solidity.readthedocs.io
https://github.com/ethereum/solidity
http://zeppelin-solidity.readthedocs.io/
http://truffleframework.com/docs/

Tru Reputation Token Documentation, Release 0.1.9

152 Chapter 23. Useful Links

CHAPTER 24

Contact Information

Feel free to contact us directly using the following channels:

Tru Reputation Protocol Sub-Reddit

Tru Reputation Protocol Slack Community

Tru Ltd

Tru Reputation Protocol Telegram Group Chat

Tru Reputation Token

153

https://reddit.com/r/truprotocol
https://reddit.com/r/truprotocol
https://tru.ltd/slack
https://tru.ltd/slack
https://tru.ltd/
https://tru.ltd
https://t.me/truchat
https://t.me/truchat
https://github.com/TruLtd/tru-reputation-token

Tru Reputation Token Documentation, Release 0.1.9

154 Chapter 24. Contact Information

CHAPTER 25

Contribution Guidelines

Whilst this project has been specifically crafted for Tru Ltd’s needs, we encourage everyone to report any bugs found
- including documentation issues - via Tru Reputation Token Github Issues Page

Please feel free to fork and modify the code as per the Apache 2 License.

155

https://github.com/TruLtd/tru-reputation-token/issues
https://raw.githubusercontent.com/TruLtd/tru-reputation-token/master/LICENSE

Tru Reputation Token Documentation, Release 0.1.9

156 Chapter 25. Contribution Guidelines

CHAPTER 26

Legal Notice

Tru Ltd is registered in England and Wales, No. 09659526

157

	Project Contents
	Project Requirements
	Token Requirements
	Sale Requirements

	Project Testing
	1. Strategy
	2. Testing Helpers & Harnesses
	3. Unit Tests
	4. Fuzzing Tests
	5. Edge Tests

	Security and Code Auditing
	1. Strategy
	2. Auditing Tools
	3. Public Instances

	Supporting Scripts
	audit.sh
	coverage.sh
	devnet.sh
	flattensrc.sh
	post-commit.sh
	pre-commit.sh
	./scripts/testnet.sh

	TruReputationToken
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	TruSale
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	TruPreSale
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	TruCrowdSale
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	BasicToken
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	ERC20
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	ERC20Basic
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	Haltable
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	Ownable
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	ReleaseableToken
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	SafeMath
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	StandardToken
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	TruAddress
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	TruMintableToken
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	TruUpgradeableToken
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	UpgradeAgent
	1. Imports & Dependencies
	2. Variables
	3. Enums
	4. Events
	5. Mappings
	6. Modifiers
	7. Functions

	Acknowledgments
	Open Zepplin
	TokenMarket

	Useful Links
	Solidity Links

	Contact Information
	Contribution Guidelines
	Legal Notice

